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This paper is a review of the problem of the observable action of enclosed electromagnetic fluxes on the
quantum-mechanical state of charged particles, known as the Aharonov-Bohm effect. The authors first
describe the quantum effects of the fluxes in the quasiclassical approximation, and discuss their relation
with basic quantum-mechanical principles. Then they examine the influence of modeling assumptions on
the predicted effects of enclosed fluxes. They analyze the experiments demonstrating the reality of the
quantum effects of electromagnetic and gravitational fluxes, and finally discuss the physical significance of
these quantum effects, comparing the current interpretation, based on the concept of a nonintegrable phase

factor, with alternative approaches.
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LIST OF SYMBOLS

A
Ar,

Ap,

(rg)

A

(F)
EROm

by

Q\H:

SO

sl

9.4

general vector potential
vector potential of a string of length L,

vector potential of parallel strings carrying
opposite fluxes

vector potential of a tube of flux of radius
o

magnetic field

z component of the return magnetic field
of a finite-length string

capacity

symbol for path integration

separation between two parallel magnetic
strings carrying opposite fluxes

electric field

eigenvalues of a charged plane rotator in
the presence of an enclosed magnetic flux
F \

kinetic energy

electric field of the biprism fiber
electromagnetic flux

nth component of the operator of elec-
tromagnetic force

flux unit 27fic /e

fluxoid

propagator for infinite magnetic string car-
rying the flux a=qF /2mfic

Hamiltonian of a charged particle interact-
ing with potentials @, A

Hamiltonian of a particle of charge ¢ and
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magnetic moment p, interacting with a dis-
tribution of electromagnetic fields
Hamiltonian of a charged particle in the
presence of the attractive potential U, and
of a magnetic string carrying the flux
a=qF /2n#c

Hankel function of the first kind

Hamiltonian of a particle interacting with a
shielded tube of magnetic flux

unperturbed Hamiltonian

current flowing through a solenoid
moment of inertia of a rotating cylinder
operator of total kinetic angular momentum
of a particle with spin +

Bessel function of order v

Josephson current

maximum Josephson current

supercurrent

quantum-mechanical propagator for a
charged particle interacting with a distribu-
tion of electromagnetic potentials ¢, A
propagator for a charged plane rotator in
the presence of an enclosed magnetic flux
F

nth component of the density of kinetic
momentum of the state of a charged parti-
cle

canonical angular momentum operator
length of a magnetic string

mass of charged particle

number of turns of a solenoid

an integer number

nonintegrable phase factor

radius of plane rotator

distance between the points P and Q in
Sec. III; nonintegrable phase factor for a
path connecting the points P and Q in Sec.
v

classical action, in general nonstationary
classical action on stationary path I'

source of charged particles

virtual images of .

attractive potential

repulsive potential

potential of the biprism fiber

inner potential of an element

electrostatic potential

potential-dependent perturbation

power operator

eigenstate of the kinetic angular momentum
operator K(zz

Neumann function

separation between the virtual sources
distance from particle source to biprism
fiber

velocity of light

distance from particle source to the observ-
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g

I

R

e S B e P
B R

ing plane

dimension of region of enclosed electric
flux

width of electron source

absolute value of electron charge

gauge function

Earth’s gravitational acceleration

Planck’s constant divided by 27

imaginary unit

probability current

probability current for the scattering of a
plane wave by an infinite magnetic string
wave number

canonical angular momentum divided by #,
assumes integer values

classical canonical momentum

operator of canonical momentum

electric charge of a particle

radius of the flux region in the case of a
cylindrical distribution of magnetic field
radius of the biprism fiber

kinematical field; velocity

electric phase shift

magnetic phase shift

distance between consecutive fringes

phase shift for a toroidal distribution of
magnetic flux

energy shift produced by a variable magnet-
ic flux

change in the critical temperature produced
by a flux F

operator of kinetic angular momentum
phase of the wave function

flux-dependent phase shift

solution of Schrodinger equation including
potentials @, A

wave function of a packet of width &
wave function representing the two-slit
scattering of charged particles

eigenstates of charged plane rotator in the
presence of the enclosed flux F
components of the wave function of a par-
ticle of spin +

wave function for the scattering of a wave
packet of width & by an infinite magnetic
string

wave function for scattering by two parallel
strings

wave function for scattering by circular
magnetic string

solution of Schrédinger equation including
potentials @, A

closed loop

parameter proportional to the magnetic
flux, a=qF/2mfic

integer part of a

angle of deflection by biprism fiber

width of probability distribution of a wave
packet
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8, phase difference between coherent com-
] ponents )

ok displacement of interference pattern pro-
duced by a uniform electric field

8p displacement of interference pattern pro-
duced by a uniform magnetic field

A wavelength of incident particle; eigenvalue
of A,

AMr,z) kinetic angular momentum of a cylindrical
wave packet

Ap London penetration depth

o’ probability density

Po radius of circular magnetic string

(4 Pauli matrices

T temporal dimension of region of enclosed
flux

@ scalar potential

o gravitational potential

Yo wave function for the scattering of a plane

wave by an infinite magnetic string

Yrpa wave function for the scattering of a plane
wave by a tube of flux of radius ry

¢§o’“ wave function for scattering by a magnetic
string, shielded by a cylinder of radius R,

Y1,¢, amplitudes for finding an electron pair on
the two sides of a Josephson junction

Y effective wave function in a superconductor

Y, wave function of a neutron beam

INTRODUCTION

The concept of electromagnetic field was introduced by

Faraday and Maxwell to localize the description of the in-
teraction of electrically charged particles. While the clas-
sical Lorentz forces depend on the electric and magnetic
strengths acting directly on the charged particles, the
‘quantum-mechanical Schrédinger equation for a charged
particle involves the scalar and vector electromagnetic po-
tentials. Since the potentials can be determined only up to
the derivatives of a scalar function of space and time, the
relation between the fields and potentials is not unique.
However, as a change in the gauge of the potentials re-
sults in the multiplication of the wave function by a phase
factor, it has been assumed that the existence of observ-
able electromagnetic effects, in both classical and quan-
tum mechanics, requires the direct action of the field
strengths on the charged particles.

Although in classical physics the state of the elec-
tromagnetic continuum can be specified by. the electric
and magnetic strengths, it turns out that knowledge of the
local field strengths is not sufficient for the consistent
description of certain electromagnetic processes affecting
the quantum-mechanical state of charged particles. One
such process is the two-slit scattering of electrons in the
presence of a magnetic flux confined to the region be-
tween the slits. Despite the fact that in this experiment
the region of space accessible to the incident electrons is
free of forces, the phases of the component waves of the
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incident state are shifted oppositely on the two sides of
the flux region, which generally produces observable
fringe shifts in the interference pattern.

A characteristic property of the aforementioned
quantum-mechanical processes is that the observable
shifts in the interference patterns depend on the amount
of electromagnetic flux enclosed between the interference
paths. The fact that the physical effects of a distribution
of magnetic field on the quantum interference of electrons
are determined by the amount of enclosed magnetic flux
was noted by Franz (1939). Further, Ehrenberg and Siday
(1949), in a report on the refractive index in electron op-
tics, predicted the existence of observable quantum in-
terference phenomena associated with stationary magnetic
fluxes. The full significance of the problem however,
only became apparent after the detailed description of the
quantum effects of the fluxes by Aharonov and Bohm
(1959). Aharonov and Bohm considered quantum effects
of both magnetic and electric fluxes, pointed out that the
theoretical predictions were within the scope of existing
experimental techniques, and most importantly em-
phasized the remarkable conceptual implications of the
existence of these processes.

After a considerable debate in the literature concerning
the physical significance of the Aharonov-Bohm effect,
the currently accepted interpretation was proposed by Wu
and Yang (1975) in terms of the concept of a noninte-
grable phase factor. Thus owing to the action of the elec-
tromagnetic flux different physical situations in a region
may have the same field strengths, while because of gauge
arbitrariness different potentials in a region may describe
the same situation. Wu and Yang (1975) stated that the
consistent description of the interaction between a particle
of charge ¢ and the electromagnetic continuum requires
the specification of a certain phase factor R, depending
on path integrals of the scalar potential ¢ and of the vec-
tor potential A, :

R =exp iﬁqc—f(apdt—Adr) ,

so that the electromagnetism is the gauge-invariant mani-
festation of the nonintegrable phase factor R. While
changes in the energy and kinetic momentum of a
charged particle depend on the field strengths acting on
the particle, it has recently been shown that the noninte-
grable phase factor R is measured by changes in the pari-
ty of the state of the incident charged particles, due to
their interaction with the electromagnetic continuum.
This paper is a review of the problem of the quantum
effects of the electromagnetic fluxes. In Sec. I we
describe the quantum effects of the fluxes in the quasi-
classical approximation and discuss their relation with
basic quantum-mechanical principles. In Sec. IT we study
the influence of modeling assumptions on the theoretical-
ly predicted effects of enclosed fluxes. In Sec. III we
analyze the experiments demonstrating the reality of the
quantum effects of electromagnetic and gravitational
fluxes. Finally in Sec. IV we discuss the physical signifi-
cance of these quantum effects, comparing the current in-
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terpretation based on the concept of the nonintegrable
phase factor with alternative approaches.

Among the previous papers considering the Aharonov-
Bohm effect we mention the works of Merzbacher (1962),
Erlichson (1970), Greenberger and Overhauser (1979), and
Peshkin (1981b).

Il. GENERAL PROPERTIES

N

A. Path-integral formalism
in the quasiclassical approximation

The quantum effects of electromagnetic fluxes are a
class of interactions having the remarkable property of
persisting even for an arbitrarily small overlap between
the region of space accessible to the incident charged par-
ticles and the distribution of field strengths. In general
the enclosed fluxes modify the amplitude of propagation
from one point of the space to the other by a phase factor,
and therefore are qualitatively different from the momen-
tum effects of distributions of field strengths acting
directly on the charged particles.

The effects of enclosed fluxes often appear as observ-
able changes in quantum interference patterns, although
the fluxes may also affect the energy spectrum and kinetic
momentum eigenvalues of the particles. Most of the
relevant properties of the quantum effects of the fluxes
can be discussed in terms of the two-slit inteference exper-
iment with charged particles. A convenient frame for the
analysis of the two-slit scattering of charged particles is
provided by the path-integral formalism of Feynman
(1948). According to Feynman’s rule, the quantum-
mechanical propagator K(r,?;r’,¢'), which gives the am-
plitude for the particles to travel from the point r',¢' to
the point r,#, is proportional to the exponential of the
classical action multiplied by i /%, summed over all paths
connecting the points r’,¢’ and r,z. The utility of the
path-integral formalism is then that in the quasiclassical
approximation the dominant contribution to the propaga-
tor arises solely from the stationary paths connecting the
incidence and observing regions.

In this section we analyze the formation of the quan-
tum interference patterns with the aid of the path-integral
formalism applied in the quasiclassical approximation.
The evolution of the state W of a particle of charge g and
mass M, interacting with an electromagnetic field of sca-

lar potential ¢ and vector potential A, is described by the
Schrodinger equation

i —HWY (1.1)

where the Hamiltonian operator H has the expression
2

L +q9 . (1.2)

H=
M

—intv—LA
(4

The fact that the evolution of the state ¥ can be described
with the aid of a propagator is a consequence of the prin-
ciple of superposition. Indeed, the state of the particle at
the time ¢ is determined by its expansion coefficients a,
over a complete set of eigenfunctions ¥, of Eq. (1.1),

Y(r,t)=>a,¥,(r,t), (1.3)
n
L RPN
it =HY, . (1.4)
Since the time-independent coefficients a, are given by
a,= [Wh(r, )W, )dr (1.5)

the expression of ¥, Eq. (1.3), can be written as
W(r,t)= [ K(r,t;0',t")W(r',t)dr’ (1.6)
where the propagator is

K(r,t;r',t" )= W, (r',t")W¥,(r,t) . .7

Although the propagator K, Eq. (1.7), describes in prin-
ciple all the properties of the interaction of the charged
particle with the electromagnetic field, the actual deter-
mination of the eigenfunctions, Eq. (1.4), and the summa-
tion appearing in Eq. (1.7) can be carried out only for a
limited number of situations. An equivalent expression
for the propagator K can, however, be obtained with the
aid of a technique known as the path-integral formalism
(Feynman, 1948; Feynman and Hibbs, 1965). This
equivalent formulation of nonrelativistic quantum
mechanics is essentially made possible by the fact that the
differential form of the Schrodinger equation

W(r, 7+ A7) =W(r,7)— %ﬁwr,f)m (1.8)

can be transformed into the integral representation

J

M

r+4r
2mifiAT

M (r—r1')?
2 2

Y(r,7+AT)= A
J

3/2 .
f exp [L + A T
#i c
where quadratic or higher-order terms in At are neglected. In the limit of vanishing A7, the kernel M(r—r')?/2#AT be-
comes very large unless r’ is near to r, so that the result of the integration with respect to r’ depends only upon the value
of the wave function and of its derivatives at r [Eq. (1.8)]. The application of Eq. (1.9) at successive instants of time
t1,..,ty _1, t then yields the wave function at the time ¢ as

3N/2

(I'—I")'—CI(P(I",T)AT} ]\I/(r',r)dr' , (1.9

1 i 5
T R PR

Y(r,t)= P

Y(r',t'Mdry_,- - drdr', (1.10)

2mih
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where

§=3 |-t
=,.§,W 2

2
Ii—r_ q
—_— A
ti—ti_1 J +C

r;+T T;
sli

ro,to being identical to r',¢' and ry,ty to r,z. For infini-
tesimal intervals #; —¢; _ the quantity S becomes the clas-
sical action for the path determined by the points (r',¢'),
(rl’tl )) s e (rN—th—l)9(r7t),

1

3Mv2+%Av—qcp

dr, (1.12)

(1)

where v is the velocity of the particle on the path r(7)
under consideration. If we now sum all the contributions
in the exponential appearing in Eq. (1.10), the integration
over the variables dry_; ‘' dr; becomes an integration
over all paths connecting the end points r’,' and r,z.
Several such paths are shown in Fig. 1. By comparing
Eqgs. (1.10) and (1.6), we see that the propagator is propor-
tional to exp(iS /#) integrated over all paths connecting
the points r',¢' and r,z (Feynman’s rule),

K(r,t;r',t')=const X frf’:,exp(i§/ﬁ)@r(7). (1.13)

The symbol Zr(7) denotes the path integration, which
was explicitly written in Eq. (1.10) as a multiple integra-
tion over the volume elements dry_;--- dr;. Here
K(r,t;r',t') represents the amplitude for the particle to
propagate from the point r’,#’ to the point r,z.

Let us use the path-integral technique to obtain the
wave function of a charged particle interacting with a dis-
tribution of electric and magnetic fields. We represent the
particle by a wave packet rather than a plane wave, be-
cause localizing the incident particle will enable us to
make a clear distinction between the conventional effects
of the field strengths and the effects of the enclosed elec-

mt

Tgo by

FIG. 1. Nonstationary paths connecting the points r’,t’ and
r,z, which appear in the expression for the quantum-mechanical
propagator of a particle in the path-integral formalism. Ac-
cording to Feynman’s rule, the propagator K (r,¢;r',t’) is pro-
portional to the sum of exp(iS /#) over all the paths connecting
the points r,¢ and r',¢’, where S is the classical action.
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—q@lr ;1) [ (5=t 1), (1.11)

tromagnetic fluxes. The dominant contribution to the
amplitude K(r,t;r',¢’) arises from those paths for which
the action in Eq. (1.13) is stationary. If we represent the
incident particle by a wave packei centered on a certain
point rg at the time ¢, the propagator in the vicinity of ry
can be approximated as

i
—S 23 VN4
P r(r,2;x0,20)

K(r,t;1',t9) =const X >exp
r

i ’
+ Z(VIOS)(r —T) } ,

(1.14)

where ' designates the stationary paths connecting the
points 1o,z and r,f. Assuming that the distribution of
canonical momentum 7 (p) of the incident wave packet
is

(i /A)p(r’ — 1)

W(r’,to)zfd(p)e dp,

then Egs. (1.6) and (1.14) show that the amplitude W(r,t)
for the particle to arrive at r,t is

3 i /ASp(r, 81,
W(r,t)=comstx 3.7 (pQ)e T nri0) (g 15)
T
where p(lg)z—V,oSp(r,t;ro,to) represents the canonical

momentum at ry,?, for the stationary path ' under con-
sideration. Expanding once more the stationary action in
Eq. (1.15) around a certain point Q in the obsérving re-
gion yields

FIG. 2. Propagation of a free wave packet of incident momen-
tum po, described with the aid of the path-integral formalism in
the stationary approximation. The stationary paths I',T' are
straight lines connecting the point 1,7, to the points r,z and

Tg,t, respectively, while p&g’ and p‘,-.Q’ are the moments on the

» paths T" and T', respectively.
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(Q)

@(r,t):constxz.;a/(p(lg))exp' ép—f (r—rQ)+;l{S-I=(rQ,t;r0,to) s
T

where p%QJ=V,QSf(rQ,t;ro,to) is the canonical momen-
tum at Q along the path T connecting ro,f, to Tt
Equations (1.15) and (1.16) provide a quasiclassical
description of the evolution of the incident wave packet,
and are the basis of the analysis in this section of the
two-slit scattering of charged particles. Thus according
to Eq. (1.16), the calculation of the wave function in the
vicinity of Q at time ¢ requires the determination of the
stationary paths I',T" connecting the initial position ry,#,
of the center of the packet to the points r,z and rop,t,
respectively, and the evaluation of the momenta py’ and
p(r,Q) along these paths. Then the form of the envelope of
the interference pattern can be obtained by inserting the
dependence of p{’ upon r and ¢ into the expression of the
momentum distribution &7 of the incident state, while the
phases of the imaginary exponentials in Eq. (1.16) deter-
mine the position of the interference fringes.

As an example of application of Eq. (1.16) we consider
a Gaussian wave packet moving freely with an average
momentum py and having the momentum distribution
82

— 7 P—po)’

o (1.17)

o 5(p)=exp

Assuming that the center of the wave packet at the time
to=0 has been situated at ry=0, we determine according
to Eq. (1.16) the probability distribution at the time ¢ in
the vicinity of the point

Olariu and Popescu: Quantum effects of electromagnetic fluxes

(1.16)

r

which represents the position of the center of the packet
at the time ¢. Since in this example we have assumed that
the particle moves in the free space, the stationary paths
are straight lines connecting points r,f and ry,? to the ini-
tial position of the center of the wave packet, as shown in
Fig. 2. Then the classical momentum p(T,Q) and the sta-

tionary action Sy are

P2=po, (1.19)
Mré
Sg(rg,t;0,0)=——", (1.20)
2t
while the momentum p(IQ) is given by
p0=pmE (1.21)

.
Then according to Eq. (1.16) the wave function of the
packet can be expressed as

— 82 2
Wy(r,t)=const X ———(r—1p)?
s(r,1)=const X exp YY) 0
)
i pof
— — . 1.2
AP M (122)

For comparison, the exact normalized wave function of a

_ &t (1.18) wave packet having the momentum distribution specified
o=yt : in Eq. (1.17) is given by
I
1 (r—rg)? ipor  ipat
Wy(r,t)= exp | — — .
ST P A A i /M T | T A it /M) | B 2AM (1.23)

Since the real part of the term 1/(8% + i#it /M) is equal to
8°M?/#%2 in the limit when 82 << #t /M, we see that apart
from a diffraction term proportional to i(r—rg)* Eq.
(1.16) leads to a proper description of the propagation of
the wave packet.

B. Two-slit scattering of charged
particles

In general, quantum interference patterns are produced
as a result of scattering from various obstacles or field
distributions, in the path of the incident particles. Of
particular interest is the scattering by two parallel slits,
which give rise to two coherent waves arriving in the ob-
serving region along paths that are slightly inclined with
respect to one another, thereby producing a pattern of
equally spaced fringes. In this section we discuss the ef-
fects of distributions of uniform electric and magnetic
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cles

-
fields upon the two-slit scattering of charged particles.
The effects thus determined of the uniform fields will
later serve as reference in a comparison with the quantum
effects of enclosed electromagnetic fluxes.

Two-slit interference experiments with charged parti-
generally employ the electrostatic biprism of
Mollenstedt and Diiker (1956). The biprism consists of a
thin metallized fiber set at a convenient potential with
respect to a pair of grounded plates, as shown in Fig. 3.:
The electric field of the fiber bends the coherent beams
passing by the two sides of the fiber and superposes them
in the observing region. As will be discussed in Sec.
III.A; the paths of the particles emerging from the source
& are deflected by an angle =y which depends on the po-
tential of the metallized fiber, but is independent of the
incidence direction. Thus, if the average momentum of
the incident particle is pg, the effect of the biprism is to
produce two virtual sources #°; and ., situated for
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small angles ¥ at the same distance from the observing al sources .| and .%,, the wave function ¥(r,?) in the vi-
plane as the source %, and having the y component of  cinity of a certain point Q in the observing region is ob-
the momentum distribution shifted by +p,y. Since every  tained according to Eq. (1.16) by the superposition of the
point in the illuminated part of the observing region is amplitudes of arrival along the stationary paths I'; and
connected by two stationary paths I'; and I'; to the virtu- I'; shown in Fig. 3,

~ ) j j
W(r,t)=constX |oZ(p; ')exp ép‘lg’(r—rg)+éSl(rQ,t;ryl?to]

(#,) i (0 i
+2(p, °)exp %—pz (I‘—I'Q)+ %‘Sz(rg,t;ryz,to) , (1.24)
(&) (&) l
where p, ' and p, ? are the initial momenta for the sta- Let us first apply Eq. (1.24) to the description of the
tionary paths I';,I’; connécting the point r,z in the ob- two-slit interference in the absence of an electromagnetic

serving region to the virtual sources .| and .%#,, p\?¢ field. We shall assume that the distribution of incident
and _E(zg) are the arrival momenta at Q for the paths T, momentum appearing in Eq. (1.24) is given by Eq. (1.17),
and T';, and S and S, are the classical actions along the with the average incident momentum having only the x
latter paths. component —po, where po>0. Then, as discussed at the
end of the preceding section, the interference pattern is
produced by the superposition of the Gaussian wave
packets arriving in the observing region from the direc-
tions of the virtual sources .¥; and .%,, the probability
distribution in each packet being cut at the corresponding
limit of the geometrical shadow of the fiber. If the in-
tegration over r’, in Eq. (1.6), leading from Eq. (1.14) to
Egs. (1.15) and (1.16) and further to Eq. (1.24),.is per-
formed relative to the center of the wave packet, then the
momentum distribution &5 is real, and consequently it
does not affect the relative phases of the two terms ap-
pearing in Eq. (1.24). Moreover, since the stationary
paths connecting the observing region to the virtual
sources .°| and .%, are straight lines, we have
PR=teIl i MUeo)
t—t, t—t,
M(rg—1,)?

S y T t0)= ’
1(rg, 813, 80) 2t —tg)

where x;,y; designate the position of the virtual source
1. Then the phase of the first term in Eq. (1.24) be-
comes

— M p—x)x+Bo—y1)
(1 —14) Qo 1 Yo—y1)y

0 (0 E

B x3+v5  xi+yi
FIG. 3. Two-slit interference experiment with charged parti- - 2 + 2 ’
cles, based on the electrostatic biprism of Mollenstedt and
Diiker (1956). The electric field of the metallized fiber a, which
is set at a convenient potential with respect to the grounded

and the second term in Eq. (1.24) is analogous. If the

plates b, bends the paths of the particles emerging from the ZII;F Sm 18 symmeti'llc, }Slo tha; F17X2 Y1=")2, tl.le
source % by the angle ¥, and thus gives rise to the virtual im- ifference between the phases of the exponential terms in

ages /°1,.%; of the source .#. The interference pattern in the Eq. (1.24) becomes M(y,_y,)y /#(t —t;). Assuming that

vicinity of a certain point Q in the observing region is obtained the particle’ is observed at the time t—zo=M: (xg
as the superposition of the amplitudes of arrival of the particle —x.#)/(—pg), we obtain the well-known result that the
at the point r,¢ along the stationary paths I';,T",. interference pattern consists of a system of equally spaced
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fringes separated by the distance Aolxg
—x_4)/(y2—y1), the central fringe being bright, where
A0=27Tﬁ/ Po- :

Now let us consider the effects of applied electric and
magnetic fields on the two-slit scattering of charged parti-
cles. According to Eq. (1.24), the inteference pattern can
be analyzed by studying the paths connecting the points
in the observing region to the virtual sources .’ and .%,.
Thus we shall first consider the paths connecting the
sources .| or %, to a certain point P in the observing
region in the absence of the fields; then we shall deter-
mine the paths emerging with the same initial momentum
from the virtual sources to arrive in the presence of the
applied fields at a shifted position Q in the observing re-
gion; and finally we shall analyze the field-dependent
probability distribution in the vicinity of the point Q by
comparing it with the unperturbed distribution around
the point P.

First we shall apply this program to the analysis of ef-
fects on the two-slit scattering of a uniform electric field
E, which is perpendicular to the average momentum p,
of the incident particle, as shown in Fig. 4. Since in the
electric case the motion parallel to the incidence direction
is uniform, all the paths emerging at the time ¢, from the
virtual sources /| or %, to arrive at the time ¢ in the ob-
serving region will intersect the region of electric field at
the same instants ¢',¢"", which are independent of the elec-
tric field. Let us consider the path emerging at the time
to, from the source %y, to arrive at the time ¢ at a certain
point X,y in the observing plane. In the absence of the

,_,_
-6
N

e

\
\ E

Ag
¢ P 0

FIG. 4. Effect of an applied electric field E on the two-slit
scattering of charged particles. The electric field bends the
paths connecting the virtual sources .%; and %, to the observ-
ing plane in such a way that the interference pattern is shifted
as a whole by a certain distance A, leaving unaffected the posi-
tion of the interference fringes relative to the envelope. The de-
flection shown in the drawing corresponds to a positive charge
of the particle.

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

electric field, the path connecting .| to X,y is a straight
line described parametrically by

Do
x:xl——ﬁ(‘r-—to) N (1253)
[T e A WP (1.25b)
t—tg

where t, <7<t Assuming that the inteference pattern is
observed at the time ¢t —t,=M(X—x;)/(—pg), the path
emerging from .| at the time t, with the same initial
velocity components [—po/M,(y—y)/(t —1t3)] admits in
the presence of the electric field the parametric represen-
tation

0
szxl——'_ﬁ(T—to), toST_<_t, (1.263)
}’EZJ’1+):_':1(T——1‘0), to<t<t’, (1.26b)
)
f—yl 1 qE 2 ' "
= —1 oA \T—t , <7<t
YE=Yyi+ — (r 0)+2 M(T ) T
(1.26¢)
y—y 1 gE
YE=p1+ (1 —tg)+ =L (" —1')?
t—t 2
+%<t"—t')w—t"), t"<r<t. (1.26d)

Equations (1.26) describe a uniform motion between ¢,
and t’, an accelerated motion between ¢’ and t”’, and a
uniform motion with a different velocity between ¢’’ and
tg. By comparing Egs. (1.26d) and (1.25b) we see that the
electric field has shifted the position of the point of ar-
rival Q in the observing plane by an amount Ay given by

14E

Ap=
E"o2 M

" 402 ﬂ "4t o
(t t)+M(t t')(t—1t") . (1.27)

This means that the amplitude &g(—po/M,(y—y,)/
(t—15)), which in the absence of the electric field contri-
buted to the wave function at X,y, will now be measured
at the shifted position X,5+Ag. However, as can be ap-
preciated from Eq. (1.27), the shift Az depends neither on
the initial position y;, nor on the initial y component of
the velocity, so that all the paths emerging at the time ¢,
from the virtual sources .’ or .%’, and arriving in the ob-
serving plane at the time ¢ will be shifted by the same dis-
tance Ag.. Consequently, the envelope of the interference
pattern will be displaced in the observing plane by the dis-
tance Ag.

Now the position of the interference extremes depends
on the phases of the exponentials appearing in Eq. (1.24).
Since the momenta p(,g) and p(zg) are both increased by
qE(t"” —t'), while the displacement in the observing plane
is normal to the x direction, the terms in Eq. (1.24) which
are proportional to p{2 and p32’ do not affect the relative
phase difference. Let us further determine the action Sg
for the stationary path connecting the points .| and Q in
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the presence of the field E, and compare it with the ac-
tion for the unperturbed path .#;P. Setting A=0 and
substituting the potentials ¢ =0 for ¢ty <7<, t" <7<t
and ¢=—Ey for t' <7 <t" in the expression of the ac-
tion, Eq. (1.12), we obtain the action corresponding to the
path, Egs. (1.26), as

SE(Q,t;yI,tQ)ZSQ(P,t;fl,to)+qup(t”—t’)

22
q E " "2 ’ "
42 (¢ )3t —2t"—t
+ 6M( )7(3 ),
(1.28)
where
M[(xp—x1)2+(yp—y1)?
SyPots Pty = MLZE =X H 0=y L )

2(t—1p)

is the action for the path .#|P in the absence of the elec-
tric field. As expected, the action in the presence of the
electric field, Eq. (1.28), is obtained from the field-free ac-
tion by adding certain terms depending on E. These
terms, however, are independent of the position y; of the
source point %;, so that the change in the action
Sg(Q,t;.%5,t;) will be identical to the change in
Sg(Q,t;.%1,t9). Referring once more to Eq. (1.24), this
means that the phase difference between the coherent
waves arriving at Q in the presence of the electric field is
equal to the phase difference between the coherent waves
arriving at P in the absence of the field. We arrive thus
at the conclusion that the position of the interference
fringes relative to the envelope of the pattern is not affect-
ed by the applied electric field, i.e., the electric field shifts
the interference pattern as a whole.

We turn now from the effects of an electric field to the
effects of a uniform magnetic field B applied in the posi-
tive direction of the z axis, as shown in Fig. 5. Let us
consider an unperturbed trajectory emerging at the time
to from the virtual source ., to arrive at the time ¢ at
the point X,y in the observing region. We shall assume
that this path intersects the region of magnetic field at the
times ¢’ and t”, and shall determine the trajectory of the
particle in the presence of the applied field B by adding a
correction to the unperturbed path. The x and y com-
ponents of the velocity of the particle in the presence of
the magnetic field are given by

f—xl

= » fo<r <t (1.302)
t—tg
vy_y_yl ’ to <T<t (1.30b)
t—tg
X—x; gB(y—y;) . )
U= T Mt —1o) (r—t'), t'<7<t (1.30c)
V=y1 gB(xX—x,)
- - =, t'<r<t” 1.3
% t—ty  Mec(t—tg) (r—t), t'<7< (1.30d)
X—x gB(y—y,)
= t/l_tl s t” t 1.30
o t—1p Mc(t—t(,)( ) <7<l ( e)
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FIG. 5. Effect of an applied magnetic field B on the two-slit
scattering of charged particles. The magnetic field bends the
paths connecting the virtual sources .¥; and %, to the observ-
ing plane in such a way that the interference pattern is shifted
as a whole by a certain distance Aj, leaving unaffected the posi-
tion of the interference fringes relative to the envelope of the
pattern. The deflection shown in the drawing corresponds to a
magnetic field oriented along the + z axis, and a positive charge
of the particle.

y—-y1 qB(X—x;)

— 1.
t—ty Mc(t—tg) (1.300)
where quadratic terms in B have been neglected. By in-
tegrating Egs. (1.30) with respect to the time, we find that
the extremity of the path in the presence of the magnetic
field is the point with coordinates

B(y—y )" —t' )2t —t'—1t")

1_ =, 980 =1

X r 2Mec(t—1,) , (131a)
I _ = qB(X —x)(t" —t') (2t —t'—1t"")

yp'=y IMc(t—tg) (1.31b)

According to Egs. (1.31), the point xl(;”,y,(,l) is obtained
from the point x,y by a rotation of small angle
@B —t")2t—t'—1t")
2Mc(t—tg)

about the point ;. It can be shown analogously that the
path emerging from the virtual source .%,, to arrive in
the absence of the magnetic field at the point x,y of the
observing plane, will be shifted by the magnetic field, so
that its extremity is the point with coordinates

@_ o BI—y)@"—1)Q2t—t'—t")

xp =X Ml —13) . (1.32a)
@_~ 9BE—x)"—t)2t—t'—1")

Y =y 2Mc(t—tg) (1.32b)
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Since both paths are displaced in the y direction by the
same distance,
gB(X —x )t —t") (2t —t'—1"")
AB = ’
2Mc(t —tg)

(1.33)

it follows that the applied magnetic field shifts the en-
velope of the interference pattern by Ap.
As previously, the position of the interference fringes

|

~ () i
W(r,t)=constX |2Z(p; ~ Jexp

#i

(&) B
+./(p; ?exp | &

), .
" is the momentum at Q; on the stationary

(Q
where p;
path connecting .%| and Q, and p(2Q2) the momentum at
Q, on the stationary path .#,Q,. Since the y com-
ponents of the momenta are increased by the amount
gpoB(t”—1t")/Mc, while the y coordinates of the points
Q; and Q, are equal, the terms in the expression of W
which are proportional to p(lfl) and p(zfz) do not affect
the relative phase of the coherent components. However,
the different locations of the points Q; and Q, along the
x direction result in a phase difference between the com-
ponents 2 and 1 of

qpoB(y, —y (" —t") 2t —t'—1t")
2Mc(t —tq)

Now the actions S; and S, are computed from Eq. (1.12),
for ¢=0. Since the magnitude of v is conserved by the
magnetic field, the kinetic energy in the Lagrange func-
“tion yields no change in the value of the action. The con-
tribution to the phase difference of the remaining term
q Av/c, which is given by

Q Q
;‘iqc— [fy;Adr~ fy,:Adr] ,

is equal to

gB Pot"—1") t _(¢'41")/2
fic M t—to

(yZ_yl) ’

the plus sign being due to the fact that the sense of the in-
tegration in the x,y plane coincides with the sense of B.
Therefore the field-dependent contributions to the phase
cancel each other, and the position of the fringes relative
to the envelope remains unchanged, up to quadratic terms
in B. Thus the applied magnetic field displaces the in-
terference pattern as a whole.
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depends on the phases of the exponential terms appearing
in Eq. (1.24). If P is a certain point in the observing
plane, we shall denote by Q; the point obtained from P
by a rotation of angle v about .¥;, and by Q, the point
obtained from P by a rotation of angle v about .%,, as
shown in Fig. 5. In this problem it is convenient to ex-
pand the stationary action appearing in the expression of
the total wave function, Eq. (1.15), about different points
01,0,, so that an equivalent form of Eq. (1.24) is

(Q,) i
—P1 ! (I‘—I'QI)"‘zS](rlet;rfl’tO ‘

(@, i
7 P2 2 (r—rg,)+ 252(rgz,t;ff2,lo) ] ] )

C. Quantum effects of electromagnetic
fluxes

In principle, the properties of the electromagnetic field
can be determined from the changes in the state of test
charged particles interacting with the field. Since the
changes in the kinematical state of a charged particle of
velocity v depend on the Lorentz force q(E+vXB/c),
the electromagnetic continuum is described in classical
physics by the local values of the electric and magnetic
field strengths E and B. The field strengths are often ex-
pressed in terms of the scalar and vector potentials ¢, A
as

104
LR PR
B=VXA.

E=—-V (1.34a)

(1.34b)

The distribution of electromagnetic potentials is not
uniquely determined by the distribution of field strengths,
as a change in the gauge of the potentials

(1.35a)

A'=A4Vf, (1.35b)

leaves the field strengths unaffected, for an arbitrary
gauge function f of space and time. Therefore, in classi-
cal electromagnetism, the potentials are considered as
mathematical entities, without physical significance.

The evolution of the quantum-mechanical ‘state of a
charged particle is governed by Egs. (1.1) and (1.2), which
include as field variables the scalar and vector potentials
@, A. Therefore it is conceivable that the physical signifi-
cance of the potentials should eventually become apparent
at the quantum-mechanical level of description of the in-
teraction between the charged particles and the elec-
tromagnetic field. However, it can be shown by a direct
calculation that the change in the gauge of the potentials
specified in Egs. (1.35) implies a phase transformation of
the wave function,
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W' =Welia/%e)f | (1.36)
so that the gauge arbitrariness is not removed, even at the
quantum-mechanical level of description of the interac-
tion.

If such effects specific to the quantum nature of the in-
teraction exist, they must depend on the electromagnetic
flux, rather than on the local value of the potentials. This
circumstance, already mentioned by Franz (1939), was in-
dependently discussed by Ehrenberg and Siday (1949),
who predicted the existence of observable quantum in-
terference phenomena associated with stationary magnetic
fluxes. The full importance of the problem became clear
after the detailed description of the quantum effects of
the electromagnetic fluxes by Aharonov - and Bohm
(1959). The action of the enclosed fluxes on the quantum
interference of charged particles, known as the
Aharonov-Bohm effect, produces a shift of the interfer-
ence fringes relative to the envelope of the pattern, while
leaving the envelope unchanged. Since the observable
fringe shifts persist even if the overlap between the in-
cident particles and the distribution of electromagnetic
flux is rendered arbitrarily small, the existence of the
Aharonov-Bohm effect demonstrates that a knowledge of
the field strengths in a certain region of the space is not
sufficient to characterize completely the state of the elec-
tromagnetic continuum in that region.

As mentioned previously, the path-integral formalism
is particularly suitable for quasiclassical analysis of the
processes of quantum interference, for it reduces the
quantum-mechanical problem to the computation of the
classical action along the appropriate stationary paths.
An examination of Eq. (1.16) for the observing region of
the two-slit scattering wave function, and of the action,
Eq. (1.12), shows that there are two distinct ways in
which the applied electromagnetic fields act upon the
charged particles to produce changes in the interference
patterns. Both the location of the stationary paths ap-
pearing in Eq. (1.16), and the part of the action arising
from the integral along these paths of the kinetic energy
depend on the local strengths of the electric and magnetic
fields. The shifts of the envelope of the interference pat-
tern discussed in the preceding section are characteristic
for this type of action of the field strengths. The other
contribution arises from the remaining part of the action
f (g Av/c—qe)dt, and it produces a fringe shift depend-
ing on the amount of electromagnetic flux enclosed be-
tween the stationary paths. The remarkable thing is that
the aforementioned contributions are independent, in the
sense that the amount of electromagnetic flux enclosed by
a certain loop is not predetermined by the value of the
field strengths at points on the loop. In particular, there
are distributions of nonzero electromagnetic fluxes, which
yield, however, vanishing field strengths in the vicinity of
the unperturbed stationary paths. Such distributions
leave the envelope of the interference pattern unchanged,
while producing observable shifts of the fringes relative to
the envelope.

Regions of space filled with nonzero electromagnetic
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fields, which are complementary to regions of vanishing
fields, occur rather frequently in physics, as, for example,
shielded boxes or guided waves. Two simple configura-
tions of special interest for our problem are the electric
field distribution of a plane-parallel capacitor and the
magnetic field distributions of an infinitely long solenoid.
Although the field strengths are vanishing in the region
exterior to the capacitor or the solenoid, the distribution
of electromagnetic potentials within those regions are not
negligible and, as will be discussed further, they lead in
fact to observable electromagnetic effects.

Let us consider a one-dimensional, time-dependent
quantum interference experiment in which the initial
wave function of a charged particle is split into two
coherent wave packets and then recombined to produce an
interference pattern, as shown in Fig. 6(a). Moreover, an
electric field E is applied after the separation of the pack-
ets, over a region of length d situated between the pack-
ets, the field being removed after a time 7, before the
recombination of the coherent packets. The electric field
can be produced, for example, by a plane-parallel capaci-
tor having two small holes in the plates, for the passage of
the wave packets, as represented in Fig. 6(a). According
to Egs. (1.16), the presence of the applied electric field
does not affect the envelope of the interference pattern,
because the stationary paths connecting the points near
the centers of the probability distribution at the initial
and the final times lie entirely in field-free regions of
space. Now although the scalar potential ¢ is constant in
each of the two field-free regions exterior to the capacitor,
there is a potential difference Ed, across the capacitor.
This means that after the application of the electric field,
the two coherent wave packets are immersed in regions of
different scalar potentials. According to Egs. (1.16) and
(1.12), this means that the difference of the phases of the

@)

FIG. 6. Experiment demonstrating the quantum effects of elec-
tric fluxes. The initial wave function of a charged particle is
split into two coherent wave packets, which are subsequently
recombined to produce an interference pattern. The electric
field E is applied after the separation of the wave packets, over
a region of length d, situated between the packets, the field be-
ing removed after a time interval 7, before recombination. The
envelope of the pattern is unchanged, but the fringes are shifted
relative to the envelope of the pattern by a distance depending
on the amount of electric flux E dy7o enclosed between the sta-
tionary paths T'; and T',. (a) Projection of the stationary paths
in the x,y plane. (b) Projection of the stationary paths in the y,¢
plane.
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wave packets 2 and 1, whose superposition produces the
interference pattern, is modified by
1

A¢>E=—E¢q¢dt , (1.37)
where the integration is performed along the stationary
paths I';,T"; connecting the source point # to the observ-
ing point Q, as shown in Fig. 6(b). Since the vector po-
tential is zero in this problem, the integral, Eq. (1.37),
represents the electric flux enclosed between the station-
ary paths,

—~Podt= [Edyar, (1.38)
so that
E
AcpE:i’%'d" . (1.39)

Thus the electric field, although not acting directly on the
charged particles, produces a shift of the fringes relative
to the envelope of the interference pattern, which is a
periodic function of the amount of enclosed electric flux.
A similar effect for magnetic flux can be demonstrated
with the aid of an infinitely long solenoid of radius r,

placed in the shadow of the fiber of the electrostatic.

biprism, as shown in Fig. 7. In this case, too, the magnet-
ic field does not affect the stationary paths connecting the
points in the incidence region to the points in the observ-
ing region. However, since the circulation of the vector

FIG. 7. Experiment demonstrating the quantum effects of
magnetic fluxes. The magnetic field B of an infinitely long
solenoid of radius 7y, placed in the shadow of the fiber a of the
electrostatic biprism a,b, leaves the envelope of the interference
pattern unchanged, but shifts the position of the fringes relative
to the envelope of the pattern by a distance depending on the
r~nag~netic flux 773B enclosed between the stationary paths
T,
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potential on a loop around the solenoid is equal to the
magnetic flux enclosed by that loop, the vector potential
has, roughly speaking, opposite orientations on the two
sides of the flux region. Then according to Egs. (1.16)
and (1.12), there will be a.change in the relative phase of
the wave packets arriving in the observing region along
different paths, given by"

_49
Ad,=-L P Avdr . (1.40)

Since v dt is just the differential path element dr, we have
PAvdr= [Bdxay, (1.41)

where the integrations are performed, respectively, along
the contour formed by the two stationary paths T';,I",
shown in Fig. 7, and on the surface delimited by that con-
tour. Thus

(1.42)

so that the magnetic field, although not acting directly on
the incident particle, produces a shift of the fringes rela-
tive to the envelope of the pattern, which is a periodic
function of the amount of enclosed magnetic flux.

It is interesting to compare the effects of uniform elec-
tric or magnetic fields, like those considered in the
preceding section, with the quantum effects of enclosed
electric or magnetic fluxes. We have seen in Sec. I.B that

uniform electric or magnetic fields displace an interfer-

ence pattern as a whole, and moreover, if the slits are
symmetric with respect to the incidence direction, the
central fringe is bright in the absence as well as in the
presence of the fields, as represented in Figs. 8(a) and 8(b).
On the other hand, the enclosed fluxes leave the envelope
of the interference pattern unchanged, but shift the posi-
tion of the fringes relative to the envelope of the pattern
by a distance depending periodically on the amount of en-
closed electromagnetic flux. In particular, whenever the
amount of enclosed electric flux f E dydt is an integer
multiple of 2m%i/q, or the enclosed magnetic . flux
f B dx dy an integer multiple of 27#ic /q, there are no ob-
servable changes in the interference pattern, while for
half-integer multiples of 27#/q or 2mrfic /q, respectively,
the positions of the light and dark fringes are inter-
changed, the central fringe becoming dark, as shown in
Fig. 8(c). The distinction between the effects of uniform
and enclosed fields has been particularly emphasized by
Boyer (1973b), and more recently by Greenberger and
Overhauser (1979).

According to Wigner (1959), the Aharonov-Bohm ef-
fect must be observable if conventional quantum theory is
right, and if such effects are found to be absent under
conditions where they are predicted, that would necessi-
tate a break from existing quantum theory. The reality of
the Aharonov-Bohm effect is now firmly established, and
several textbooks have already mentioned the effect
(Feynman, Leighton, and Sands, 1965; Tomonaga, 1966;
Sakurai, 1967; Baym, 1969). The importance of the prob-
lem is due to the fact that the quantum effects of the
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FIG. 8. Effects of various applied electromagnetic fields on the
probability distribution in the observing region, for two-slit
scattering of charged particles. (a) Unperturbed interference
pattern. (b) Pattern displaced as a whole by a uniform electric
or magnetic field. (c) Fringe shift produced by an enclosed elec-
tric flux of 7#/q or by an enclosed electric flux of 7#ic /q. In
this case the position of the light and dark fringes are inter-
changed with respect to the unperturbed pattern, while the en-
velope remains unchanged.

fluxes demonstrate the limitations of the concept of local
field strength in quantum mechanics. Thus, in the period
preceding the discovery of the Aharonov-Bohm effect, a
region of space free of field strengths was considered elec-
tromagnetically empty, even if multiconnected. Now we
see that the result of certain quantum interference experi-
ments in field-free, multiconnected spaces is not always
the same, and in order to account for this fact we have to
invoke the presence of electromagnetic potentials acting
on the charged particles, or to accept the possibility of a
nonlocal action of the distributions of inaccessible field
strengths, or to formally ascribe the results to changes in
the boundary conditions applied to the frontier of the ac-
cessible multiconnected region. Whatever should be the
explanation, it remains true that a knowledge of the field
strengths acting directly on the charged particles does not
provide a complete description of the state of the elec-
tromagnetic continuum in the multiconnected region ac-
cessible to the incident particles. More information is
needed beyond knowledge of the local field strengths to
specify the state of the electromagnetic continuum in a re-
stricted region of space; this is the point demonstrated by
the Aharonov-Bohm effect.

D. Bohr’s complementarity principle

The work of Aharonov and Bohm attracted consider-
able attention to the problem of the quantum effects of
the fluxes. Apparently the first reaction to the work of
Aharonov and Bohm was that it was wrong. However, an
indirect confirmation of the reality of the Aharonov-
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Bohm effect was soon reported by Furry and Ramsey
(1960), who pointed out that the existence of an action of
the electromagnetic fluxes of the type described by
Aharonov and Bohm is fully consistent with the principle
of complementarity. This principle, formulated by Bohr
(1928), states that quantum-mechanical systems may be
characterized by two different kinds of description, whose
applicability is mutually exclusive (for a historical review
see Jammer, 1966). The wave and particle descriptions of
a particle are said to be complementary; an experiment
that demonstrates the particle-like nature of electrons will
not also show their wavelike nature, and vice versa. In
the case of two-slit scattering, if we determine which slit
the particle went through along its particle-like path from
the source to the observing region, then according to the
principle of complementarity the process of measurement
of the path must exert an action on the incident particle
that is sufficient to destroy the wavelike interference pat-
tern. We shall discuss in this section a series of two-slit
scattering experiments in which the electric and magnetic
fields play the role of the perturbing action inherent in
any measuring process. Thus we shall see that the ex-
istence of effects of this type is not only consistent with,
but also required by, the principle of complementarity.

As suggested by Furry and Ramsey (1960), the slit
through which the incident particle passed as it traveled
from the source to the observing region can be determined
in principle by placing a charged test body between the
two slits, and by observing the direction of the momen-
tum change produced during the passage of the scattered
particle. In order that the particle should not be subject
to any field produced by the test body, a condition neces-
sary for the electric Aharonov-Bohm effect, the region
beyond the slits is electrostatically shielded by two metal
pipes ' and Z", as shown in Fig. 9. Moreover, the test
body of charge g is held fixed halfway between two con-
denser plates attached to the pipes until the incident parti-
cle is inside the pipes and will be brought back to that po-
sition before the particle emerges from the pipes, the test
body moving freely only for a time interval 7o when the
particle is certain to be inside the shielding pipes. Follow-
ing Furry and Ramsey, we first determine for the ar-
rangement described above the magnitude of the momen-
tum change produced by the passage of the incident parti-
cle through one of the slits, and hence obtain the uncer-
tainty in the position of the test body that is consistent
with the measuring of the momentum change. Then we
relate the uncertainty in the position of the test body to
the uncertainty in the potential difference between the
two pipes, and find out that the resulting potential uncer-
tainty is just that required to destroy the interference pat-
tern by an electric Aharonov-Bohm effect.

The magnitude of the electric field acting on the test
body can be determined from the potential difference be-
tween the two pipes. The potential difference V produced
by the presence of the incident charged particle in one or
the other of the tubes is

V=+-1

=t2¢, (1.43)
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FIG. 9. Complementarity of the wavelike and particle-like
properties of matter in two-slit scattering of charged particles,
according to Furry and Ramsey (1960). The slit through which
the incident particle passed can be determined from the direc-
tion of the momentum change of a test body of charge g,
placed between the plates of a condenser % attached to the two
metal pipes 27’ and Z". However, the possibility of measuring
this momentum change entails an uncertainty in the position of
the test body, and consequently an uncertainty in the potential
difference between the shielding pipes 2’ and 2". The uncer-
tainty in the potential difference is then sufficient to destroy the
wavelike interference pattern by an electric Aharonov-Bohm ef-
fect, while there is no field acting along the stationary paths
connecting the regions of incidence and observation.

where € is the total capacity of the condenser and at-
tached pipes. This result can be obtained with the aid of
Green’s electrostatic reciprocity theorem, stating that in a
system of conductors for which the potentials are V;
when the charges are ¢; and V| when the charges are g/,
these quantities fulfill the relation

2aVi=246V
the zero of the potential being at infinity (see, for exam-
ple, Panofsky and Phillips, 1962). If Eq. (1.44) is applied
to the case of two conductors carrying the charges Q and
— Q, respectively, it yields

(1.44)

, , gV,
(V] —-Vz)—(V1—V2)=_ ’

(1.45)
Q

with the notations of Fig. 10. However the charge Q can
be expressed as € o( V| —V,), where €, is the capacity of
the system of two conductors, so that the right-hand side
of Eq. (1.45) becomes qV,/% (Vi—V,). Now if the two
conductors are the shielding pipes Z’' and &' shown in
Fig. 9, we have V;= —V,, because of their symmetry. If
we let the charge Q become vanishingly small, the poten-
tials ¥, and V, go to zero, and in this limit the ratio
qV/(V—V,) becomes q/2% y, which is the result, Eq.
(1.43).

Assuming that the plates of the condenser attached to
the pipes are separated by the distance /,, the magnitude
of the electric field acting on the test body is, according to
Eq. (1.43),
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(a) ;“’W //\ -0y,
ay;
(b) ' :a,vz

FIG. 10. Evaluation of the potential difference between two
conducting bodies, induced by a charge g placed inside one of
the conductors. According to Green’s electrostatic reciprocity
theorem, the charges and the potentials in situations (a) and (b)
fulfill the relation (V] — V3 )—(V;—V,)=qV,/Q.

) ‘

E= TR (1.46)
The force on the test body is goE, and it produces a
change in the momentum of goE7, If this momentum is
to be measured, the uncertainty in the initial momentum
of the test particle must be smaller than gyoE7, This can
be arranged provided that the uncertainty Ay in the posi-
tion of the test particle is larger than #/2qq E 7,

#

A _—.
Y > 2q9E T

(1.47)

If the condition (1.47) is fulfilled, we can determine which
slit the particle went through. In this case, according to
the complementarity principle, the measuring process
must exert a certain action on the incident particle, which
would destroy the coherence of the interfering beams. As
previously mentioned, such a perturbation cannot be the
result of a direct action of the field strengths. The only
remaining possibility is that the perturbation be due to the
electric flux enclosed between the two pipes, which is just
the effect predicted by Aharonov and Bohm. In order to
see that this is indeed the case, we recall, following Furry
and Ramsey, that the displacement by y of the test body
from its central position produces a potential difference

V= 1.4
v . I (1.48)

as can be shown by applying Green’s reciprocity theorem
to the plane-parallel geometry. Then, due to the uncer-
tainty in the position y of the test body, there will be an
uncertainty AV in the potential, which according to Eq.
(1.47) is

A‘I7>i .
q7o

(1.49)
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However, as discussed in Sec. 1.C, the uncertainty AV in-
duces, by an electric Aharonov-Bohm effect, an uncer-
tainty APy in the phase difference,

APp=qrAV /%> 1, (1.50)

so that, as required by the principle of complementarity, '

the interference pattern is indeed wiped out by the
measuring process used to identify which slit the particle
went through. .

A different way of tracing the path of the charged par-
ticle from the source to the observing region was suggest-
ed by Furry and Ramsey (1960), who described a concep-
tual experiment in which a search coil of N turns is
placed beyond the slits and connected to the condenser
plates €, as shown in Fig. 11. The passage of the
charged particle along one or the other of the stationary
paths induces, by Lenz’s law, a current in the search coil,
and the measurement of the charge accumulated on the
condenser as a result of the flow of this current will then
reveal which slit the particle went through. In this exper-
iment, too, the regions including the stationary paths are
shielded, so that the incident particle will not be subject to
any field produced by the coil. As the shielding conduc-
tors do not play a direct role in the measuring process,
they have not been represented in Fig. 11. Following Fur-
ry and Ramsey, we determine for the arrangement
described above the current induced in the search coil by
the changing magnetic flux of the incident particle, and
hence the charge accumulated on the plates of the con-
denser as a result of the flow of that current. We find
that the uncertainties of the charge on the condenser and
of the magnetic flux in the coil are complementary; the

f o

)

FIG. 11. Another example of complementarity of the wavelike
and particle-like properties of matter in two-slit scattering of
charged particles, according to Furry and Ramsey (1960). The
slit through which the incident particle passed is determined in

this experiment by measuring the charge deposited on the plates

of the capacitor %, by the currents induced in the search coil
Z o during passage of the incident particle. However, the un-
certainties in the charge on the capacitor plates and the flux in
the search coil are complementary; the flux uncertainty that is
consistent with measurement of the path of the particle through
the slits is sufficient to destroy the interference pattern by a
magnetic Aharonov-Bohm effect.

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

uncertainty in the flux consistent with measurement of
the charge variation produced by the passage of the in-
cident particle is just that required to destroy the wavelike
interference pattern by a magnetic Aharonov-Bohm ef-
fect.

If we assume that the resistance of the search coil is
zero, then the current induced in the coil is that required
to prevent any change of the magnetic flux. Since a
current .# flowing through an Ny-turn search coil of ra-
dius 7o and length L, gives rise to a total magnetic flux

2272
Flo)= TN
LoC
it follows that the currént A.# induced in the coil by the
changing magnetic flux F, of an incident particle of
charge q is given by

CFqLO
A7 =5 (1.51)
4mroNyg
Then the charge AQ accumulated on the plates of the

condenser ¥ after the passage of the particle becomes

cL,

AQ=W [ Fyar . (1.52)
Now let us determine the magnetic flux F, produced by a
particle of velocity vy moving along a straight line in the
x direction, in a search coil whose axis is at a distance d
from the path of the particle, as shown in Fig. 12. In or-
der to obtain F, we shall compute the flux through a sin-
gle turn, as the z component of the magnetic field at the
center of the turn multiplied by its area, and then shall in-
tegrate all the contributions along the axis of the coil.
For a particular position x of the incident particle the to-
tal magnetic flux is thus

27rr(2)qvodN o

_ , (1.53)
 c(x?+d?)L,

FIG. 12. Variables in the calculation of the magnetic flux F,
produced by a particle of charge g and velocity v, through a
search coil .#;, whose axis is at a distance d from the path of
the particle.
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and a further integration with respect to dt =dx /v,
yields, according to Eq. (1.52), the charge AQ accumulat-
ed on the plates of the condenser,

AQ=-1

. .54
2N, (1.54)

Let us now look more closely at the measuring device
in Fig. 11, formed by the search coil and the attached
condenser. From a classical viewpoint, this system is
described by the Lagrange function

LQ =t gL o2

2%, (1.55)

where .Z is the inductance of the coil. The canonical
momentum .% ¥ corresponding to the Lagrange func-
tion, Eq. (1.55), is equal to NoF,/c, where F, is the flux
through a single turn of the coil, so that the Hamiltonian
of the problem is

N3FT @2
230C2 2%0 ’

H(Q,NoF,/c)= (1.56)

According to the quantum-mechanical rules, the quan-
tization of the system is obtained by replacing the canoni-
cal momentum NyF;/c in Eq. (1.56) by the operator
—i#0/0Q (Marcuse, 1970). Hence the uncertainties of
the charge on the condenser plates and of the flux in the
search coil are correlated by

NoF, #
S

2 (1.57)

AQA

If the charge AQ =q/2N, appearing in Eq. (1.54) is to be
measured, then the uncertainty in the single-turn magnet-
ic flux F; must necessarily exceed

fic

AF; > 75 (1.58)
q

If the condition (1.58) is fulfilled, then we can determine
which slit the particle went through along its path from
the incidence region to the observing plane. In this case,
according to the complementarity principle, the measur-
ing device must exert a certain action on the incident par-
ticle, which destroys the coherence of the interfering com-
ponents. Since this perturbation cannot be due to the
field strengths because of the shielding, it necessarily fol-
lows that the perturbation is the result of an action of the
fluxes associated with the search coil and eventually the
attached condenser. The perturbing action is indeed pro-
vided by the magnetic Aharonov-Bohm effect due to the
flux enclosed in the search coil. As discussed in Sec. I.C,
the uncertainty AF; in the magnetic flux produces an un-
certainty in the relative phase A®jp of the coherent com-
ponents, given by

AF
A<I>B=q 1

>1. (1.59)

Therefore, as required by the principle of complementari-
ty, the interference pattern is indeed wiped out by the
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measuring process used to identify which slit the particle
went through.

It must be stressed that the lower limits for uncertain-
ties in the values of the electric and magnetic fluxes, Egs.
(1.49) and (1.58), exist only to the extent we insist upon
determining the path of the incident particle through the
two slits. On the other hand, in conventional two-slit
scattering experiments, where such a constraint does not
apply, the electric and magnetic fluxes can be defined
with arbitrary accuracy, thereby producing well-
determined observable effects in the interference patterns.

E. Ehrenfest’s adiabatic principle

Enclosed electromagnetic fluxes not only affect the
quantum interference patterns, but can also produce
changes in the energy and kinetic momentum eigenvalues
of bound-state systems. Since the effects of electric fluxes
involve time-dependent perturbations and therefore non-
stationary states, the eigenvalue shifts appear as effects of
enclosed magnetic fluxes.. In this section we analyze the
effects on a charged plane rotator of the magnetic flux en-
closed by an infinitely-long solenoid, and show that the
flux-dependent shifts of the energy and kinetic angular
momentum eigenvalues are consistent with Ehrenfest’s
adiabatic principle (Peshkin, Talmi, and Tassie, 1961;
Weisskopf, 1961; Noerdlinger, 1962; Peshkin, 1981a,
1981b; Kobe, 1982; Frolov and Skarzhinsky, 1983).
Moreover, we demonstrate that the combined effect of
quantization of the canonical angular momentum in in-
teger multiples of % and the flux dependence of the energy
eigenvalues is to produce a flux-dependent phase shift
proportional to the angle of rotation of the charged parti-
cle about the magnetic flux (Gerry and Singh, 1979;
Lewis, 1983; Guillod and Huguenin, 1984).

The charged plane rotator is a mechanical system in
which the motion of a particle of charge g and mass M is
restricted to the circumference of a circle of radius Ry.
We assume, further, that a magnetic flux can be applied
along the axis of rotation with the aid of a long solenoid,
so that the strength of the magnetic field is zero in the re-
gion of the circumference of rotation, as shown in Fig. 13.
We shall analyze the stationary states of the plane rotator
in the presence of the magnetic flux from the viewpoint
of the old quantum theory, an approach which is impor-
tant because it allows us to determine the energy and
momentum eigenvalues without reference to the corre-
sponding wave functions. According to Bohr (1913),
dynamical equilibrium in the stationary states is governed
by the laws of classical mechanics, and the different sta-
tionary states are determined for circular orbits by the
condition that the canonical angular momentum be equal
to an integer multiple of #. In the case of the plane rota-
tor, the paths are restricted to the circumference of radius
R, and the allowed classical motions are characterized
by a constant angular velocity. Then the canonical angu-
lar momentum m#i is
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'
E--f
/
\RO v

FIG. 13. Plane rotator of radius R in the presence of the mag-
netic flux F of an infinitely long solenoid. The canonical angu-
lar momentum of the stationary states of this system is quan-
tized in integer multiples of 7, whereas the energy and the kinet-
ical angular momentum eigenvalues depend on the amount of
enclosed flux, in accordance with Ehrenfest’s adiabatic princi-
ple.

mbi= ‘Mv+%A9 R, , (1.60)

where v is the velocity of the particle and Ay the azi-
muthal component of the vector potential. The expres-
sion of Ay in a gauge with symmetry of rotation is

F
Ag= ,
®~ 27R,

(1.61)

where F is the enclosed magnetic flux. If the canonical
angular momentum is quantized in integer multiples of #,
the kinetic angular momentum of the stationary orbits as-
sumes, according to Egs. (1.60) and (1.61), the values

MuR,= % #, (1.62)

m—

and the energy corresponding to these orbits is given by

" _ 7
Rom ™ 2MR}

__agr
27fic

m , m=0,%x1,--- .

(1.63)

It is apparent from Eq. (1.63) that the observable differ-
ence between the energies of two stationary orbits depends
on the amount of enclosed magnetic flux,

hZ
2MR}

:2_m::2_ qF (m'_mn) .

%3 m
ERym' —ERym = >

(1.64)

As pointed out by Peshkin (1981a,1981b), this bound-state
Aharonov-Bohm effect is an example of quantum action
of enclosed fluxes where there is no overlap between the
charged particles and the distribution of field strengths.
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The energy levels from Eq. (1.63) are represented in Fig.
14 as functions of the magnetic flux F. The energy levels
are periodic and even functions of the flux F, as stated by
Byers and Yang (1961).

The fact that the canonical angular momentum can as-
sume only values which are integer multiples of 7 is an in-
stance of the Sommerfeld quantization conditions. Ac-
cording to Sommerfeld (1916), the stationary states of a
certain periodic system are determined by the condition
that the integral of the canonical momentum 7 over a
period of the generalized coordinate § be a non-negative
integer multiple N of the quantum of action 274,

Ppdg=27#N . (1.65)
In the case of the plane rotator, the coordinate § appear-
ing in Eq. (1.65) is the angle of rotation, while the conju-
gate momentum p becomes the canonical angular momen-
tum m#i. Now if the parameters defining the system
under consideration are slowly varied, it can be shown
that the integral, Eq. (1.65), is constant up to exponential-
ly small terms (see, for example, Landau and Lifschitz,
1960). Then if the conditions (1.65) are used to determine
the stationary states of the system, it follows that allowed
orbits are transformed during an adiabatic change into al-
lowed quantum orbits (Ehrenfest, 1916). Thus
Ehrenfest’s adiabatic principle enables us to determine the
stationary states of deformed systems which are adiabati-
cally related to undeformed systems with known quantum
conditions (Jammer, 1966).

Let us assume that the known quantum system is the
plane rotator in the absence of magnetic flux, the flux be-
ing subsequently increased adiabatically from zero to a
certain value F. In the absence of magnetic flux the
canonical and kinetical momenta are identical, and both
are quantized in integer multiples of #, so that the energy
levels have the form

e

. 2 2
Epnm,m units of h/ZMR[l

1 2
F, in units of Zﬂhc/q’

FIG. 14. Energy levels EY’,, of a plane rotator of radius R, as
0

a function of the enclosed magnetic flux F. The energy terms
are periodic and even functions of the flux F.
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#m?
2MR3’

E,({’O’m= m=0,+1,.... (1.66)
If the magnetic flux is now slowly raised from zero to its
final value F, the changing flux will produce an electro-
motive force acting on the rotator to modify its kinetic
angular momentum, as indicated in Fig. 13. Since the
rate of change of the kinetic angular momentum is pro-
portional to the rate of change of the magnetic flux, we
have

d(MvRy)=— —1—dF (1.67)
2mce

Taking into account the expression of the vector poten-
tial, Eq. (1.61), it follows that the canonical angular
momentum (Mv+qAg/c)R is conserved during the adi-
abatic raising of the flux. As in the absence of flux the
angular momentum was quantized in integer multiples of
#i, we conclude that it is the canonical angular momentum
which remains quantized in integers for arbitrary values
of the flux. Analogously, the change in the energy of the
rotator is given by

which, when integrated with respect to F with the initial
condition, Eq. (1.66), yields the previous expression of the
energy levels, Eq. (1.63). As pointed out by Weisskopf
(1961), if the particle is in the orbit then it is no surprise
that it changes its state when the flux is switched on. The
remarkable thing is that the stationary states are the same
even if the particle enters the orbit after switching on the
flux, and thus the particle notices the presence of a mag-
netic field in which it does not move.

In order to see that the flux dependence of the energy
levels gives rise to an Aharonov-Bohm phase shift, let us

.consider now the wave-function description of the

charged plane rotator. From the quantization of the
canonical angular momentum and from the expression of
the energy eigenvalues, Eq. (1.63), we infer that the nor-
malized eigenstates of the rotator are

il
W (6,1) im0 lﬁ{ orie

t)= exp |im0— ,
Fom m172 7P 2MR}

(1.69)

where 6 is the angular position of the particle. We can
evaluate the effects of the magnetic flux on the rotating

0 i S5 Jar ey Darile Y consdeang e propugtr o the prbl,
|
. qF ’
- , . . . ’ it \m— ntic
KRO(G’I;G’O):;,":Z_OQ exp |im(60—6")— IMR2 (1.70)
The series given by Eq. (1.70) can be summed with the aid of the Poisson sum formula
S 4= 3 F@m), (1.71)
m=—co n=—o
where .% is the Fourier transform of q,,,
F(&)= f_ww ame " ™dm | (1.72)

and where the variable m in Eq. (1.72) is formally considered to be continuous (Morse and Feshbach, 1953, p. 483). Ap-
plying the sum formula, Eq. (1.71), to the series, Eq. (1.70), we obtain the expression of the propagator in the form

172 2

R
2%t

MR}
2mitit

0

K}QFO)(G,t;O',O)z exp

n=—o

This expression has also been derived by Gerry and Singh
(1979) with the aid of the path-integral technique. The
general term in Eq. (1.73) represents the amplitude of a
particle starting from the point 6’ at the time =0, and
arriving at the point 6 at the time ¢, after n rotations
around the magnetic flux, in a sense given by the sign of
n. According to Eq. (1.73), the amplitude for the particle
to be at the point 8 is the sum of the amplitudes of arrival
at @ after an arbitrary number of rotations around the
magnetic flux. In the presence of enclosed magnetic flux,
the phases of these contributions are shifted by
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(0—60 —2mn)*+

iqgF

277'hc(@—é’ —2mn) | .

(1.73)

I
qF(0—6'—2mn)/27#c, a quantity proportional to the
product of the magnetic flux and the angle swept out by
the path of the particle.

Let us use the propagator, Eq. (1.73), to determine the
evolution of a wave packet having an average angular
velocity w at the time t=0,

f

\II(R'Z),5~exp

(0'—6p)? | MR}w F
_ i L9
282 # 2ntic

(1.74)
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The dominant contribution to the wave function at the
time ¢, Eq. (1.6), arises from that term # in the expression
of the propagator, Eq. (1.73), for which the argument of
the exponential function is stationary when integrated
over &',

0—60y—27n —wt =0, 6'~6, . (1.75)

Thus the flux-dependent part of the propagator becomes
in this approximation exp(igFwt/2m#c), which means
that the phase at the center of the moving packet is pro-
gressively shifted by an amount proportional to the en-
closed magnetic flux.

F. Invariance of the quantum effects of the fluxes

While a knowledge of the field strengths acting directly
on a charged particle is not sufficient to describe the
quantum effects of electromagnetic fluxes, the specifica-
tion of the distribution of electromagnetic potentials over-
determines the electromagnetic field. We shall demon-
strate in this section that the quantum interference effects
described by Ehrenberg and Siday, and Aharonov and
Bohm, depend in fact on the amount of enclosed elec-
tromagnetic flux. Moreover, we shall discuss the gauge
invariance of these quantum effects, as well as their rela-
tivistic invariance.

Let us consider a distribution of field strengths com-
pletely contained in a certain space-time region, while in a
complementary region the field strengths are zero. From
the relations between the field strengths and the poten-
tials, Eqgs. (1.34), it follows that in the region where the
field strengths are zero, the potentials can be obtained by
differentiation of a certain function g of space and time,

—_1% (1.76a)
¢ ot
A=Vg . (1.76b)

The function g is in general multivalued in the field-free
region, where it is defined by Egs. (1.76); its value in-
creases by

F=§ (cpdt—Adr) (1.77)

for each additional rotation, along a loop €, around the
region. The sign of F depends on the sense of rotation.
The circulation of the electromagnetic potentials, Eq.
(1.77), can be expressed with the aid of the four-
dimensional Stokes’s theorem as an integral over a surface
3 spanning the loop (2,

F= fz (Eycdtdx +E,cdtdy +E,cdtdz

+B.dy dz+B,dx dz+ B,dx dy) . (1.78)

The quantity in Eq. (1.78) represents the four-dimensional
electromagnetic flux through the surface =. It can be
shown that as a result of Maxwell’s
VXE=—09B/cdt and divB=0, the electromagnetic flux
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equations -

F, Eq. (1.78), evaluated on a closed surface in four-
dimensional space, is zero, so that the choice of the sur-
face = spanning the closed loop Q is indifferent. We have
already encountered the notions of flux of the electric
field, Eq. (1.38), and flux of the magnetic field, Eq. (1.41),
in the discussion of the electric and magnetic Aharonov-
Bohm effects. It must be stressed that the notion of elec-
tric flux as it appears in Eq. (1.78) is different from the
conventional, three-dimensional flux of the electric field,
which is related to Coulomb’s law.

If we consider again the expression of the potentials,
Egs. (1.76), we see that we could eliminate the potentials
@, A from the field-free region by a gauge transformation,
Egs. (1.35), generated by the function f = —g. After this
transformation the Schrodinger equation becomes formal-
ly identical to the equation for a free particle. However,
the boundary conditions to be imposed on the new wave
function are different from the conventional requirements
of continuity and single valuedness, because the exponen-
tial appearing in the transformation, Eq. (1.36), is not in
general single valued. All the properties that previously
were derived from the Schrodinger equation, including
the potentials, will be obtained in the new gauge from the
boundary condition that the solution of the free-particle
Schrédinger equation be multiplied by exp(igF /#c) after
encircling once the region of the enclosed flux F. Thus
the quantity that correctly describes the electromagnetic
effects in quantum mechanics is the nonintegrable phase
factor exp(igF /#c) (Byers and Yang, 1961; Wu and Yang,
1975).

The mechanism by which the boundary conditions pro-
vide a description of the quantum effects of the fluxes can
be demonstrated in the problem of the charged plane rota-
tor, discussed in the preceding section. The Schrédinger
equation including the vector potential, Eq. (1.61), is

# ?
UKD YR=ER)¥% , (179

9 _af

~'30 T 2n#ic

where the eigenstates ¢(R12 are obtained as continuous,

single-valued solutions of the equation. By a gauge
transformation, Eq. (1.35), generated by the function
f =—F6/2m, the Schrédinger equation becomes simply

2,1 (F)
ﬁZ i) IIIRO

" 2MR2 36?

=ER ¥R, (1.80a)

where the new boundary condition on the wave function
1/)%; " is that

Ui, (0-+2m)=e ~9 ey (g) . (1.80b)
The solutions of Eq. (1.80a) have the form
1/13{0) ~ exp(iA@), and the condition, (1.80b) yields

A=m —qF /27#c, where m is an integer. Then the ener-
gy eigenvalues are

# ?
2MR}
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in agreement with the previous result, Eq. (1.63), obtained
by conventional analysis of the problem.

The criterion that restricted the transformations of the
potentials to the form of Egs. (1.35), was that the field
strengths remain unchanged under the transformation.
Now a gauge transformation generated by a multivalued
gauge function f, which preserves, however, the single
valuedness of the potentials, changes the amount of elec-
tromagnetic flux enclosed by a certain loop, because the
singularities of the function f are equivalent to distribu-
tions of electromagnetic flux threading the loop. There-
fore, the gauge transformations that leave the distribution
of field strengths invariant throughout the space corre-
spond in general to single-valued functions f. Mul-
tivalued gauge transformations may, however, conserve
the distribution of field strengths in certain regions of the
space, as happened, for example, with the transformation
discussed at the beginning of this section. As pointed out
by Kretzschmar (1965a), the elimination of the potentials
must be accompanied by a corresponding change in the
boundary conditions for the wave functions, such that the
flux appearing explicitly in the Schrodinger equation and
the flux hidden in the boundary conditions should always
add up to the actual electromagnetic flux. By this means
the quantum effects of the fluxes are obtainable even
when the potentials are formally eliminated from the re-
gion accessible to the charge particles. The important
conclusion of this analysis is that the observable effects of
the enclosed electromagnetic fluxes depend on the nonin-
tegrable phase factor exp(igF/#ic). Consequently these
quantum effects are periodic functions of the amount of
enclosed flux, and are invariant to regular gauge transfor-
mations.

The quantum effects of electromagnetic flux are also
invariant to Lorentz transformations. Thus the distinc-
tion made in Sec. I.C between electric and magnetic
Aharonov-Bohm effects is to a certain extent arbitrary,
for the electric and magnetic fields themselves depend on
the choice of the system of reference (Lenz, 1962). To see
this, let us suppose that we observe the magnetic
Aharonov-Bohm effect in a system of reference where the
center of mass of the incident wave packet is at rest. In
that system, the solenoid has a velocity —v,, equal and
opposite to the velocity v, of the incident particle in the
laboratory system. If in the laboratory system the axial
magnetic field of the solenoid were B and the electric
field were zero, the moving solenoid would enclose the
same magnetic field B and also a transverse electric field
E =Bv,/c, where second-order terms in vy /c are neglect-
ed. The paths of the coherent wave packets and the posi-
tion of a cross section through the solenoid are shown in
Fig. 15, as they are seen in the two systems of reference
described above. In the laboratory system there is a con-
tribution to the flux arising from the magnetic field,
which is given by 7r3B, where r, is the radius of the
solenoid, as can be appreciated from Fig. 15(a). In the
system of reference of the solenoid, the stationary paths
now lie in the y’,¢' plane, so that only the electric field
contributes to the flux. This contribution is given by the
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FIG. 15. Relativity of the quantum effects of electromagnetic
fluxes. . (a) The quantum effects of a flux enclosed in a solenoid
appear in the laboratory system as due to the magnetic com-
ponent. (b) In a system of reference where the center of mass of
the incident particle is at rest, the same quantum effects appear
as due to the flux of the electric field enclosed within the mov-
ing solenoid. The cylinders represent the position of the cross
section of the solenoid in the x,y plane at successive instants of
time.

electric field E =vyB /c multiplied by the area of the el-
liptic projection of the region of enclosed fields in the
y',t’' plane, so that the enclosed flux is also equal to 7r3B.
The point is that what appears to be an effect of the elec-
tric flux can be equally regarded as an effect of the mag-
netic flux. The concept providing an invariant descrip-
tion of the Aharonov-Bohm effect is thus the electromag-
netic flux, Eq. (1.77) or (1.78).

G. Conservation of the physical quantities

Ehrenfest (1927) demonstrated that the time derivatives
of the average position, momentum, energy, and angular
momentum of a particle are given by averages of the
operators corresponding, respectively, to the classical
velocity, force, power, and torque. The conservation of
energy and momentum in connection with the
Aharonov-Bohm effect has been discussed more recently
by Boyer (1973a,1973b). We show in this section that the
changes in the average values of the aforementioned
quantities depend on the product of the field strengths
times the probability density, whence we conclude that
the average position, momentum, energy, and angular
momentum of a charged particle are not affected by dis-
tributions of enclosed fluxes. -

In order to describe the flow of a certain mechanical
quantity described by the operator /I>, we shall consider
the density of 14 corresponding to a certain state ¥,

LW DY+ WP *W*) =Re(¥* VW) . (1.81)
According to Eq. (1.1), the time derivative of the first
term in the expression of the density of Vis given by
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9y
at(\I/ Vy)

k14

=\Il*
ot

\P+é[(f1\ll)*f/\lf——\l/*l7f1\l/]. (1.82)

Since the terms appearing in Eq. (1.82) are not averaged
over the entire space, we cannot use the Hermitian prop-
erty of H to simplify the terms; instead we must employ
the transposition relation

¥\ V¥ * 7y ____i_h__ . * a9
(H\I/)X——\I/HX—szlv L4 p—cA X
*
+X fa-—%A \y] )
(1.83)
where X and W are two arbitrary functions, and
P= —i#V is the operator for the canonical momentum.

Substituting X =P¥ in Eq. (1.83) and then using Eq.
(1.82) yields

* - N
s} -~ 1 . ~ q ~ -~ oV I Aa A
- ‘IJ* | 4% - * _ = - 9 k| ¥ | 21 i _
at( )+ M div [W* |p CA V¥ (VYY) P cA L5 v o1 h(HV VH) |V, (1.84)
the physical content being provided according to Eq. 1
(1.81) by the real parts of the terms. The terms on the i=— VS——iA wy*
left-hand side of Eq. (1.84) describe the rate of accumula- ¢

tion of ¥ and the flux of ¥ into the local vicinity, while
the term on the right-hand side represents the source of
the quantity V.

The equations describing the conservation of the physi-
cal quantities can be derived by substituting in Eq. (1.84)
the quantum-mechanical operators corresponding to those
quantities. The continuity equation for the probability
density WW* is obtained from Eq. (1.84) for V=1,

%(W*\P)+divj=0 , (1.85a)
where the probability current j is
*
=—— v p—LAa v+ |p—LA|w|. (185
J 2M P c S L c ( )

The vector field j appearing in Eq. (1.85b) may be inter-
preted as a probability. current. To demonstrate this we
substitute in Eq. (1.84) ¥=x, V=p, and ¥=z. Thus we
infer that the rate of change of the average position is
given by

\1/> :

where the angular brackets denote the spatial average, so
that the operator

1

; (1.86)

g;(\l/]r\ll>=<\l’

~ 9
—ZA
P c

Y=— —mv—%A (1.87)

corresponds to the velocity of the particle. If the state is
stationary, then the continuity equation becomes simply
divj=0, so that the integral of the normal component of
the probability current j over a closed surface is zero for
any stationary solution of the Schrédinger equation. In
the quasiclassical approximation the wave function of the
charged particle assumes the form W =exp(iS /#), where
S is the classical action, and the probability current, Eq.
(1.85b), becomes
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i.e., the product of the probability density WW* and the
classical velocity (VS —g A /c)/M.

The density of the kinematical momentum is the real
part of ¥*(p—qA/c)¥, and has the same expression as
the probability current, Eq. (1.85b). Unlike the density of
the canonical momentum Pp= —i#V, the density of the
kinematical momentum is invariant to gauge changes of
the vector potential A, Eq. (1.35b), when they are accom-
panied by a phase transformation of the wave function,
Eq. (1.36),

P [—mv—iA'
C

W= (——iﬁV—%A]‘I’. (1.88)

The equations describing the conservation of the kinemat-
ical momentum, which are obtained from Eq. (1.84) by

making successively the substitutions V= Px—qA,/c,
V=p,—qA,/c, V=p,—qA,/c, have the form

d J
k42 —
ot nt axk l--\kn L 4 an" > (1.89)
where

K,=9" p,—L4, v, (1.90a)

1
Fk"_ZM [\I/* Pk“‘%Ak pn'_%An v

*
+ ﬁn_%An v ﬁk_%Ak ‘Il* } >

(1.90b)
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F,=q _9¢ 104,
" dx, c¢ ot
q ~ q 94, 94,
+ —A4 -
2Mc | [PFT 4k ox,  Oxg
3d, 34,

- 5 9

ox,  Ox p’f c A |

(1.90c)

and where the indices k,n range over the spatial coordi-
nates Xx,),z, repeated indices being summed. The real part
of the vector components K,, Eq. (1.89a), represents the
density of the kinematical momentum, the real part of the
generally asymmetric tensor I'z,, Eq. (1.90b), represents
the current of the momentum density as the nth com-
ponent of the momentum flowing in the direction k,
while the quantities ﬁ',,, Eq. (1.90c), are the components
of the operator for the force exerted by the field strengths
on the charged particle. Then the conservation equation
(1.89) shows that the average momentum of a charged
particle can be modified only by a direct action of the
field strengths. If the distribution of field strengths is
surrounded by finite barriers which render the probability
of the presence of the particle in the region of the fields
very small while keeping the wave function nonsingular,
then by taking the average of Eq. (1.89) we see that the to-
tal kinetic momentum is not changed by distributions of
enclosed electromagnetic fields.

A similar treatment of the kinetic energy density can be
obtained from the operator ﬁz(’f)—q A/c)*/2M, and
yields the time variation of the energy as

9§+divrg=w* 178 28

a1 (1.91)
where
1 2
F=—w p—1 :
Y] P CA] v, (1.92a)
1 2
Ty= v p—LAa||p—LA|W¥
& 4M2 P c P ¢
2 *
+ ’f)——%A P %A \1/*], (1.92b)
A~ q ~ q 1 0A
W=-2|p—2A||-Vp——2
oM | P H c ot ]
10A |I5 ¢
+ |—Ve - o1 {p CAH . (1.92¢)

In this case the scalar &, Eq. (1.92a), represents the kinet-
ic energy density, the vector 'y, Eq. (1.92b), represents
the current of energy density, and the quantity w, Eq.
(1.92¢), is the operator for the power transferred from the
field to the particle. Equation (1.91) shows that the aver-
age energy of the particle can be changed only by the
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direct action of an electric field, and not by an enclosed
electromagnetic field. It must be stressed that all the con-
servation equations discussed in this section are valid only
if the wave function ¥ is a solution of the time-dependent
Schrédinger equation (1.1).

The fact that inaccessible electromagnetic fluxes do not
affect the average value of the kinetic momentum is ap-
parently contradicted by some results reported by Kobe
(1979), and later by Bocchieri and Loinger (1982), con-
cerning the two-slit scattering of charged particles. Kobe
analyzes the diffraction pattern produced by two Gauss-
ian slits, by assuming that the motion is classical along
the incidence direction and quantum mechanical in the
transverse directions, and moreover assumes that the ef-
fect of the enclosed flux is to shift the relative phase of
the waves passing through the two slits. These approxi-
mations reduce the problem of two-slit scattering to that
of the one-dimensional quantum interference of two
Gaussian wave packets, whose relative phase is modified
by an amount proportional to the enclosed magnetic flux.
Kobe (1979) points out that when the two wave packets
arrive in the observing plane, the average kinetical
momentum has a nonzero average value, although there is
no force to act on the particle. According to Kobe, the
conservation of the total momentum would be secured by
a transfer of momentum to the material of the slits.
However, the aforementioned flux dependence of the
average kinetical momentum is in fact due to the approxi-
mations made in the analysis of the scattering problem,
and the nonzero average momentum actually arises from
the overlap of the Gaussian wave packets representing
coherent components passing through the two slits. The
same type of analysis would have yielded no flux-
dependent momentum change if rectangular slits were
used instead of Gaussian slits. To see this explicitly, let
us consider the free-particle one-dimensional states
X, exp(i®;) and X,exp(id,), whose phases can be adjust-
ed by the constants ®; and ®,, and which satisfy at the
time t=0 the conditions

[ Xiyx,dy =0,

. X,
[ x3 ooy =0. (1.93b)
y

The conditions of Egs. (1.93) are fulfilled if X; and X,

(1.93a)

- assume nonzero values in disjoint regions of the space, as

for example in the case of scattering by two rectangular
slits. If the momentum representations of the wave func-
tions X, and X, are

X1(3,0)= [ afVe™dk (1.94a)

X,(0,00= [ a{Pe™dk , (1.94b)
then the wave functions at the time ¢ are

X, (p,0)= [ aVeir—imki/ Mgy (1.95a)

Xop,0)= [ afPeir —imkt/ Mgy (1.95b)

The average position and the average momentum for the
state X =X exp(i®;)+X,exp(i®,) at the time ¢ are given
by
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(X(2) | pX (1)) ={X;(8) | pX1(2)) +{X2(8) | X (2))

e —i(®—D)) (1)x

+2r [ dk

(X(1)| 5, X(1)) =(X1(1) | p,X1(2)) +{X5(2) | py X, (1)) 4270 [ kdik (e T OB () S PIm P2y

However, the conditions (1.93) in the momentum repre-
sentation take the form

d (2)
J e =r—dk =0,

[ kai™aPdk =0,

(1.97a)

(1.97b)

which means that the interference terms in Eqgs. (1.96) are
equal to zero; thus, under the stated conditions, the aver-
age position and momentum are not affected by the
choice of the relative phase between the interfering waves.

The remark that inaccessible fluxes might affect not
only the phase, but also the momentum of a charged par-
ticle can in fact be traced back to the original work of
Aharonov and Bohm (1959), this suggestion being later
developed by Aharonov, Pendleton, and Peterson (1969).
These authors consider an electron incident upon a grat-
ing consisting of enclosed magnetic fluxes, and from the
fact that the phase difference between consecutive partial
waves is shifted by an amount proportional to the en-
closed flux, thus affecting the directions of constructive
interference, they conclude that the grating would change
the momentum of the incident electron. What really hap-
pens is that the magnetic flux shifts the position of the in-
terference fringes relative to the envelope of the pattern,
while the average kinetic momentum and the location of
the envelope of the interference pattern are independent of
the amount of enclosed flux. This can be demonstrated
by extending the analysis developed in Egs. (1.93)—(1.97)
to an arbitrary number of rectangular slits. This same ex-
planation applies, as well, to an assertion by von
Westenholz (1973), that the entire interference pattern is
shifted by an enclosed magnetic flux.

The fact that there is no deflection of the average kinet-
ic momentum of an electron passing enclosed magnetic
flux was emphasized by Boyer (1972a,1973a,1973b).
Boyer (1972a,1972b) also pointed out that the diffraction
angle Oy at which the phase difference due to the inequal-
ity of the path lengths compensates the phase shift pro-
duced by an enclosed magnetic flux F is given by
O0p=qF /acp,, where a is the separation between the slits
and p, the incident momentum of the particle of charge
q. Although the expression of the angle 6 is independent
of Planck’s constant, Erlichson (1972) stressed that the
flux-dependent angular shift still converges to zero in the
classical limit, for the. classical limit is obtained for
vanishingly small values of the ratio Ay/a, where
A.0= 277%/ po.

In order to analyze the conservation of angular momen-
tum we must also consider the spin of the charged parti-
cle. We shall restrict our analysis to a particle of spin +,
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aal(cZ) ikt (2) (P —Dy) (1) aal(cZ) ikt (2)
—— +— i———+—a
i 3k -+ M ay” | +e ag +

*
1.9
ok M k ‘ , (1.96a)

(1.96b)

I
so that the wave function becomes the two-component
spinor ¥ ,¥_. The Hamiltonian of the particle of
charge g and magnetic moment p is

2

A~ 1 1. ~

A= p—LA | +99—10B, (1.98)
where o are the Pauli matrices
o 0 —i 1
ox=11 0l %=1|; o] %= |0 —1|- (1.99)

The operator of the total kinetic angular momentum is

T=rx ’;‘)—%A +1#0, (1.100)

and according to Eq. (1.84) the rate of change of the an-
gular momentum operator J is given by

43

=X F-FXD) 41X V(oB)+uE XB,

(1.101)
where the divergence term was omitted. The operator F
represents the force exerted by the electromagnetic field
via the electric charge g of the particle, and takes the
form of Eq. (1.90c). While the operator rxF is not Her-
mitian in the presence of a magnetic field, the sym-
metrized vector product (rxF-Fxr)/2 represents the
operator for the torque on the particle due to the force F.
The remaining terms in Eq. (1.96) depend on the magnetic
moment pu of the particle, and as in the classical situation,
they arise from the operator of the force V(uoB) and
from the torque exerted by the field B acting on the mag-
netic moment p of the particle. According to Eq. (1.101),
the rate of change of the kinetic angular momentum Tis
proportional to the intensities of the electric and magnetic
field strengths; in particular, if the wave function of the
particle is vanishing in the region of the field strengths,
then the angular momentum of the particle will not be af-
fected by the distribution of enclosed electromagnetic
fields.

Since the part of the Hamiltonian (1.98) dependent on
the magnetic moment p of the particle is proportional to
the strength B of the magnetic field, we conclude that
there are no effects of enclosed electromagnetic fluxes on
the spin of the particle. However, Aharonov and Vardi
(1979) have considered an arrangement by which an en-
closed magnetic flux could apparently modify the average
value of the spin of a particle. In this arrangement a
beam of spin-5 particles polarized in the y direction is
split and then recombined by using an interaction of the
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form H int = —M20, in the regions I and II shown in Fig.
16. Moreover, a magnetic flux F, oriented in the positive
y direction, is enclosed between the stationary paths T';
and T'; shown in Fig. 16. The wave function of the in-
cident particle is the spinor

e—mr/4

ex1r/4

1
21/2

>

and since the enclosed flux F shifts the phase of the com-
ponents passing on the two sides of the flux region by
+gF /2fic, the wave function of the final state is propor-
tional to

1 e—i‘n’/4 0
21/2 0 e—qu/Zﬁc+ eHT/4 eth/2ﬁc (1.102)
Now the spinor
1 e—iﬂ'/4—in/2ﬁc
21/2 ei‘n‘/4+in/2ﬁc

is an eigenstate of the oi;)erator Gy =cos(qF /%),
—sin(gF /#ic)o,, so that the particle emerges with the
spin rotgted about the z axis by an angle gF /#ic. Accord-

FIG. 16. Effect of an enclosed magnetic flux on the direction
of the spin of an incident particle. The incident beam of spin-%
particles polarized in the y direction is split and then recom-
bined by using an interaction of the form H,,= —uzo, in re-
gions I and II. Since the enclosed magnetic flux shifts the rela-
tive phase of the components passing by the two sides of the
flux region by gF /2#c, the particle emerges with the spin rotat-
ed by an angle gF /7ic about the z axis. The transfer of kinetic
angular momentum occurs, however, in regions I and II and is
due to the torque exerted by the magnetic field acting in those
regions.
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ing to Aharonov and Vardi (1979), this experiment would
demonstrate the existence of quantum effects of elec-
tromagnetic fluxes on internal degrees of freedom, other
than the electric charge. However, the final state, Eq.
(1.102), depends on the product of the magnetic flux
times the charge of the particle, rather than on the mag-
netic moment u. Moreover, the transfer of angular
momentum to the particle occurs in the regions I and II
shown in Fig. 16, and is due to the torque exerted by the
magnetic field strengths acting in those regions. Thus the
experiment described by Aharonov and Vardi actually
shows that if two wave packets are superposed in the
presence of an interaction of the form —uz&,, the angu-
lar momentum of the final state depends on the initial rel-
ative phase of the wave packets, and does not demonstrate
a direct action of the enclosed flux on the spin of the par-
ticle.

To see this in detail, let us consider the problem of a
charged particle of spin + interacting with a magnetic
field B =B’z oriented along the z axis, where B’ is a con-
stant. We shall assume that the state of the particle at the
time t=0 can be represented by a Gaussian wave packet
at rest, the spin being in the x,y plane and making an an-
gle vy with the y axis, as shown in Fig. 17. The wave
function of the particle is the spinor

v, (x,y,z,t)
V_(x,p,2,t) |’

1
21/2

which gives the amplitudes ¥, and W_ for the particle
with spin in the + or — direction, respectively. Accord-
ing to Eq. (1.98), the wave functions ¥ and W_ are solu-
tions of the Schrodinger equations

# oV,
——WVZ\I/+—,uzB'\I/+=iﬁ 5 (1.103a)
# ov_
—WVZ\I/_—f-,uzB'\I/_:iﬁ Fralt (1.103b)
y y

Yy
\i X X

@ ()

FIG. 17. Conservation of angular momentum in the quantum
interference of particles with spin. (a) The initial Gaussian
wave packet, with the spin in the x,y plane at an angle v, with
respect to the y axis. (b) An applied magnetic field of the form
B =B'z, where B’ is a constant, splits the packet into two
coherent components having their spin orientation along the
magnetic field, while the phases at the centers of these wave
packets differ now by vy,. The change of angular momentum is
due to the torque exerted by the applied field on the magnetic
moment of the particle.
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where the constant B’ is the gradient of the magnetic
field, and the charge of the particle is assumed to be g=0.
The solutions of Egs. (1.103) can be obtained by consider-
ing a transformation to an accelerated system of reference
(Greenberger and Overhauser, 1979),

\P+(x,y,z,t)=‘l’(+0) x,y,z-—zﬁ—-——t
. . 2pi2.3
i , i uB"t
— t —— , 1.104
X exp ﬁsz % oM ( a)

V_(x,9,2,)=¥?

1 uB’ ,
sV ~ t5,t
P2t Ny ]

Xexp | — é,uB 'zt —

#i

'2
u J (1.104b)

where \l/(f) and W' are the free-particle normalized solu-
tions

(0)
\I,+
\l/(())

1
= 217237483721 4 it /M 62)372

_ x2+y2+22
28%(1+itit /M8?)

Xexp

—ivy/2—im/4
e
ivg/2+im/4
e

(1.105)

It is apparent from Eq. (1.104) that the components ¥
and W_ are moving with increasingly large momentum in
the + zand — z directions. The spinor

—ivy/2—im/4
e

R

in Eq. (1.105) is an eigenstate of the operator
0, =cosvg0, —sinvy0y, so that it indeed describes a parti-
cle having its spin rotated by an angle vy with respect to
the y axis. Now after a certain time ¢ when the distance
between the wave packets W, and W_ is large compared
to their width 8, uB’t2/M >>3, the packet arriving at the
positive end of the z axis has the spin in the + z direc-
tion, while the packet arriving at the negative end has the
spin in the —z direction, so that the total spin is now
zero. The change in the kinetic angular momentum of
the particle is due to the torque exerted by the applied
field B. According to Eq. (1.101), the operator for the

rate of change of the angular momentum is given in the
present problem by

:id?(fx +ijy)= —ipB'G,(x +iy)—ipuB'z(G +i0y) .

(1.106)

By taking the average of the operator, Eq. (1.106), with
respect to the wave function, Egs. (1.104), we find that
the torque due to the applied magnetic field is given by
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d . u’B"*8%t #4? | iwytmr2)
L (T +id,)=—
ar =) #i 2M25*
2pr2g2,2 2pr2.4
u-B'“6°t u-B'"t
Xexp |— -
P # 4M?8?

(1.107)

Integrating the torque [Eq. (1.107] with respect to the
time yields the change in angular momentum produced by
the applied magnetic field,

AJ,= g— sinvg, AJ,=— g cosvy . (1.108)

The variation, Eq. (1.108), is indeed equal to the differ-
ence between the magnetic moment of the final state,
which is zero, and the initial angular momentum
JO = —(#/2) sinvy, J;°)=(ﬁ/2)cosv0. Conversely, the
shift of the relative phase of the spinor components by
vo/2 [Eq. (1.105)] will be converted by the magnetic in-
teraction —uz0, into a rotation of the spin of the particle
in the recombined state. In the case of the arrangement
discussed by Aharonov and Vardi (1979), the phase shift
is produced by the enclosed flux, but the change in the
direction of the spin takes place partly before, and partly
after, the action of the flux on the charge of the particle.
Therefore it does not seem appropriate to regard such
processes as demonstrating a direct action of the elec-
tromagnetic flux on the spin of the incident particle.

H. Effects of the fluxes in the hydrodynamical
formulation of quantum mechanics

Madelung (1926) has shown that the Schrodinger equa-
tion for the wave function of a charged particle interact-
ing with a distribution of electromagnetic potentials can
be replaced by a set of hydrodynamical-type equations for
the probability density and current, which depend only on
the electric and magnetic field strengths. The question
arises, then, of how it is possible that distributions of en-
closed electromagnetic fields should produce observable
effects on the quantum interference patterns. We shall
see in this section that the quantum effects of the fluxes
arise in the hydrodynamical formulation of quantum
mechanics as the result of the small, but nonzero penetra-
tion of the wave function in the region of the field
strengths. Thus, unlike the classical situation where a
knowledge of the field strengths in the vicinity of the par-
ticle path is sufficient for a description of the motion, a
complete characterization of the quantum-mechanical
motion requires specification of the field strengths even in
regions where the probability of finding the particle is ar-
bitrarily small.

The hydrodynamical form of the quantum-mechanical
equations can be obtained by substituting in Egs. (1.1) and
(1.2) the wave function written in the form

W =pe'® (1.109)
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and then by separating the real and imaginary parts. The
equation obtained by equating the real part to zero is

2 2

3P 1 q # A
72— |ave—LA 2P o, (1110
o T |TVET A T T, (1110
and that for the imaginary part is
30 iy [ L lava—4a |p2| =0 1.111
ar TV % ¢ P ' (1.111)

In the classical limit, when the term —#’Ap/2Mp be-
comes negligible, Eq. (1.110) approaches the Hamilton-
Jacobi equation for a particle interacting with the poten-
tials @, A, while Eq. (1.111) is the continuity equation for
the density p? and the current p?v, where the velocity field
v is given by
1
Ve ——

ﬁV<I>——ZLA ) (1.112)

Now the differentiation of Eq. (1.110) with respect to the
spatial variables yields a form depending only on p and v,

av 1 dA
M B +(v'V)v |=q |—-Vp— 3 ‘~—Mv><cur1v
# _ Ap
+ 2MV s (1.113)

However, according to Eq. (1.112) we have
—_ 9
curlv= McB , (1.114)

so that the hydrodynamical form of the quantum-
mechanical equations is

av q 7 _A
vV [=¢E+ L g2
M ‘ ar +(v-V)v |=qE+ Cv><B+ 2MV P ( 5)
2
) | div(pv)=0, (1.116)

at

where the variables p,v are related to the wave function ¥
by
PP =V (1.117)

and

1
TMv?—

4

#_ Ap
M p }dt—Mvdr

=_ﬁgS

i YW W'V g

M =
v 2 py* c

A (1.118)

Strocchi and Wightman (1974), in considering the prob-
lem of the quantum effects of the fluxes from the hydro-
dynamical viewpoint, have raised an interesting question
of consistency. They remark that while Egs.
(1.114)—(1.116) are local equations involving the field
strengths E and B, they still lead to the prediction of ob-
servable effects depending on distributions of inaccessible
field strengths. Strocchi and Wightman (1974) attribute
the quantum effects of the fluxes to the penetration of the
wave function into the region of nonvanishing fields.
Thus even if the wave function were kept out of the re-
gion of nonvanishing fields by infinitely large repulsive
potentials, there would still be a reminiscence of the pres-
ence of the fluxes in the need to specify the tangential
component of the velocity field v at the boundary of the
accessible region. The fact that the Aharonov-Bohm ef-
fect results from boundary conditions in the approximate
topology of a complete separation between the region ac-
cessible to the particle and the distribution of field
strengths was previously pointed out by Schulman (1971).
The physical importance of the penetration of the in-
cident particle in the region of the field strengths has also
been emphasized by Wisnivesky and Aharonov (1967),
Janossy (1970), Menikoff and Sharp (1977), Casati and
Guarneri (1979), and Costa de Beauregard and Vigoureux
(1982). The connection between the hydrodynamical for-
mulation of quantum mechanics and the quantum effects
of the fluxes was recently discussed by Takabayashi
(1983) and Wédkiewicz (1984).

The possibility that the tail of the wave function of the
particle might account for the finite observable effects of
the fluxes on the quantum interference patterns is due to
the fact that the velocity field v, Eq. (1.118), and the
quantum potential —#*Ap/2Mp appearing in Eq. (1.115)
assume finite values, even in regions where the probability
p? becomes very small. Specifically, if we consider a
scalar quantity with dimensions of energy Mv?/2
—#Ap/2Mp and a momentum field M, it can be shown
from Egs. (1.110) and (1.112) that the integral of these
quantities along a closed loop in four-dimensional space is
related to the amount of electromagnetic flux through
that loop,

_4 _
. P (cpdt—Adr) . (1.119)

Since the wave function must be single valued, the phase increase A® = gS [(8® /3t)dt + (3P /dr)dr] must be an integer

multiple N of 27, so that we have

# A
L 27 Ap
gﬁ ! [ZMV ~oM p )dt——Mvdr
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+4 § (cpdi—Adr)=—20AN, N=0,1,....

(1.120)
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In particular, if the integration loop belongs to three-
dimensional space, the condition (1.120) becomes

¢ Mvdr=2wiN — % [ Bda,

a form reported by Janossy (1970). The quantization con-
dition, Eq. (1.120), is not affected by the presence of
repulsive barriers surrounding the region of the field
strengths, and although the probability p? of finding the
particle in the region of the field strengths may become
vanishingly small, the hydrodynamical formulation of
quantum mechanics still yields the quantum effects of the
fluxes. As can be appreciated from Eq. (1.120), these ef-
fects are periodic functions of the enclosed flux F, with
the period 27fic /q, where g is the charge of the particle.
If the integration loop crosses a nodal line of the density
p2, then the constant N in Eq. (1.120) may assume half-
integer values, too. Such an example will be discussed in
Sec. ILA.

In order to see in detail how the quantum effects of the
fluxes arise in the hydrodynamical formulation of quan-
tum mechanics, we shall consider the problem of an en-
closed electric field acting on a charged particle. First, we
solve the problem in the conventional, wave-function rep-
resentation, and then evaluate the corresponding hydro-
dynamical variables. We assume that the initial state is a
superposition of two Gaussian wave packets of width &
and momentum 7k,

1 Y +yo) .
X5(»,0)= 21721748172 exXp | — 282 +ikoy
y—po)?
+ 21721745172 282 ikoy
(1.121)

At the time =0 an electric field E is applied along the y
axis in the region —dy/2 <y <dy/2, and then removed
after a time interval 7. The wave function of the particle
during the period when the electric field is applied can be
represented with a good approximation by

—igEtd, /2% d
X5(p,0)e A —~2°— (1.122a)
‘ d d
X (y,0)= {X5(y,0)e4E0 /A _7" <y < 70 (1.122b)
: d
X5(,0)e 4" 40" 39—< y (1.122¢)

where 0<t <73 Equation (1.122b) is an approximate
form of the wave function [Eq. (1.104a)] for the
quantum-mechanical motion under the influence of a con-
stant acceleration. Since we are interested in values of the
electric field such that qE7ydy~7#, the displacement of
the probability distribution occurring between —d,/2 and
dy/2, which is of the order of gET/2M ~#2/2MgEd},
can be neglected for large values of E. Equations (1.122a)
and (1.122c) describe the phase changes due to the scalar
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potential in the field-free regions, which preserve the con-
tinuity of the wave function X§ at +d,/2. At the time
T =My, /#k, both wave packets have their centers at
y=0, and the wave function is

21/2

XE) (p T)=
s T T4812(1 +ipg /kod)1 /2

2
Xexp | —
P T 28 (1 +iye/kodd)
gETyd,
X cos [koy — 2 s (1.123)

where exponentially small terms of the order of
exp(— y%/ 28%) have been neglected. Now the probability
density of the initial state is

2 1 —(y +y()%/8? 1 —(y —yy)*/8?
PE»0)= 271728 ¢ 271728
1 —(y24y3)/8?
+ cos(kqy) , (1.124)
1728 oy
and the velocity field
_ 2 2 2
e 2yyo /8 . 2yyo /8 _ .;VO2 sin(2kqp)
(1.0) fikg kod
vs,0)= — 3 >
M ¢ PP0® +e2yy°/8 +2 cos(2kqy)
(1.125)

According to Egs. (1.122), the probability density at the
time g is not effected by the electric field,

P8’ 70)*=ps(»,0)% (1.126)
while the velocity field at the time 7y is
ET d
vs, 0+ 1y <20 (1127a)
(E) M 2
Vs (}’,7'0): dO
v5(,0), |y [>—. (1.127b)
The final probability density at the time T is then
(E) 2 2
(», T)*=
ps Y 7728(14 2 /k264)1 72
2
y
Xexp | —————F5 5"
P17 82(04p3/k35% ]
E
X cos? koy—q 27';:10 (1.128)

These hydrodynamical quantities have been represented in
Fig. 18 for the values of the parameters ko=7/8, yo=385,
dy =28, and for values of the enclosed electric flux of
Etydy=0, 7m#i/2q, w#i/q. We see that the initial probabil-
ity distribution ps(y,70)? is practically unaffected by the
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electric field, which acts on the exponentially small tail of
the wave packets. However, although the probability
ps(y,70)? is very small in the region between the two pack-
ets, the initial velocity field v§® (y,7o) has finite values in
that region. Moreover, the initial pattern of the velocity
field at the time 7, depends markedly on the electric flux,
in such a way that the area under the curve of v§E vs y,
comprised between the ordinates of two points, gives the
phase difference between those points. After a certain
time the differences in the pattern of the velocity field
v{¥ appear as flux-dependent changes in the probability
distribution p(aE )(y, T)%. In particular, the assertion by
Janossy (1974) that the penetration of the quantum states

2
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FIG. 18. Hydrodynamical representation of the quantum in-
terference of two Gaussian wave packets. (a) The packets of
width 8 are initially centered at yo==+38, and have an incident
momentum Muvy= F#/8. (b), (d), and (f) The relative phase of
the wave packets is shifted by an electric field acting for a short
period of time in the region of the tail of the packets, between
—& and 8. The enclosed electric field does not affect the proba-
bility distribution, but changes the velocity field v. (c), (e), and
(g) Interference patterns observed after a time y,/vo
=3M& /7#i, when both packets have their centers at y,=0,
corresponding to amounts of enclosed flux causing phase shifts
of 0, m/2, and , respectively. The difference A¢y between the
initial phases at the centers of the packets is 7 times the area
under the curve of v vs y, comprised between the ordinates of
the points yo=+38.
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in the region of the field strengths would not noticeably
affect the motion of the incident particles appears to be
unfounded.

If we consider again Eq. (1.110), we set that it is-a
Hamilton-Jacobi equation for a charged particle interact-
ing with a vector potential A and an effective potential
energy qp—#Ap/2Mp. If the wave function ¥ were
known, for example by solving the Schrodinger equation
for W, then the action #® could formally be used to define
via Eq. (1.110) a set of classical trajectories for a particle

!

FIG. 19. Lines of the probability current for two-slit scattering
of a particle of charge g: (a) in the absence of flux, as reported
by Philippidis, Dewdney, and Hiley (1979); (b) in the presence of
a magnetic flux 7fic /2g enclosed between the two slits, as re-
ported by Philippidis, Bohm, and Kaye (1982). The probability
density is proportional to the number of lines per unit of length.
The central light peak from (a) is displaced by the enclosed flux
of (b) by a quarter of a fringe.
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of charge g and mass M acted on by the force derived
from the aforementioned effective energy and vector po-
tential. The classical velocity of the particle at a certain
point of its trajectory is given by (AV®—qA/c)/M,
evaluated at that point. However, since the field v has an
identical expression [Eq. (1.112)], the ensemble of these
classical trajectories yields the pattern of the probability
current, Eq. (1.85b). Such a technique based on the quan-
tum potential —#?Ap/2Mp was used by Philippidis,
Dewdney, and Hiley (1979) in the case of two-split
scattering of a free particle. Later, Philippidis, Bohm and
Kaye (1982) applied the same technique to scattering by
two slits in the presence of a line of magnetic flux placed
between the slits. The patterns of the probability currents
thus obtained are reproduced in Fig. 19. Because of the
continuity equation the probability density is proportional
to the number of lines per unit of length in the observing
region. We see in Fig. 19(a) a central peak accompanied
by smaller satellites. In Fig. 19(b) we see that the effect
of an enclosed flux F=m#c/2q is to create an asym-
metric pattern, similar to that shown in Fig. 18(e), which
corresponded to the same phase difference of 7/2.

Il. ANALYTIC REPRESENTATIONS

A. Scattering of a plane wave
by an infinite magnetic string

The observable effects of enclosed fluxes arise from
phase shifts followed by the quantum interference of the
components of the incident state passing by different sides
of the flux region. In order to analyze the role of the field
strengths in the Aharonov-Bohm effect, we shall consider
in this section detailed solutions of the Schrédinger equa-
tion for several relevant configurations of incident states
and field distributions. We shall see that the quantum ef-
fects of the fluxes exist even if the overlap between the in-
cident particles and the field strengths is rendered arbi-
trarily small, thereby forcing us to reconsider the role of
field strengths in the description of an electromagnetic in-
teraction.

An important example of distribution of field strengths
for which the Schrodinger equation can be solved explicit-
ly is that of the magnetic flux of a long solenoid of small
transverse cross section. In the limit when the cross sec-
tion becomes vanishingly small while the magnetic flux
enclosed in the solenoid is kept constant, such a configu-
ration is known as a magnetic string. In this section we
shall discuss the scattering by an infinitely long magnetic
string of a beam of charged particles represented in the
incidence region by a plane wave. As shown by Aharonov
and Bohm (1959), the infinite magnetic string produces a
shift in the phase of the plane wave, which is proportional
to the amount of enclosed flux, and which gives rise to an
emergent radial wave whose amplitude is a periodic func-
tion of the enclosed flux. The scattering contribution has
not, however, the conventional form of a cylindrical wave
in all asymptotic directions, but rather it is concentrated
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in the vicinity of a half-plane II parallel to the incidence
direction and having its edge coincident with the magnet-
ic string. This structure of the wave function in the vicin-
ity of the half-plane II is due to the quantum-mechanical
scattering of the phase-shifted components of the incident
state, which pass by the opposite sides of the string; thus
the associated observable changes in the probability distri-
bution are a manifestation of the quantum effects of the
magnetic flux enclosed in the string.

Let us assume that we have an infinite magnetic string
carrying the flux F and coinciding with the z axis, as
shown in Fig. 20. The vector potential of the string can
be represented by the components

Ag(r)= -, 4,=0, 4,=0, 2.1)
27r

where r and 6 are the polar coordinates in the x,y plane.
Since the vector potential is independent of z, we shall as-
sume that the flux-dependent wave function is uniform in
the z direction. The Schrodinger equation for a particle
of charge g, mass M, and energy #*k?/2M, moving in the
presence of the magnetic string, is

Py 1av {kz__l_ 9

—l - —a

— = 2.2
30 ¥=0, (2.2)

or2 ' r or r?

where the parameter « is given by

R (2.3)
O 2t
The single-valued eigenfunctions of Eq. (2.2) are
Jim—a)(kr)e™, m=0,%1,... (2.4)

and, as shown by Aharonov and Bohm (1959), the wave
function for the scattering of a plane wave of momentum
#ik, incident from the positive end of the x axis, has the
form

FIG. 20. Scattering of a plane wave by an infinite magnetic
string carrying the flux F. The string produces a progressive
shift in the phase of the incident wave, which is proportional to
the amount of enclosed flux, and gives rise to a scattered wave
whose amplitude is a periodic function of the magnetic flux.
The amplitude of the scattered wave becomes very large in the
vicinity of the half-plane I, due to quantum diffusion of the
phase-shifted components of the incident state, passing by oppo-
site sides of the string.
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_i-721|m—a| J\m—a| (kr)e™®

Y(n@= 3 exp

(2.5)

where the origin of the angle 6 coincides with the positive
part of the x axis, and m is an integer. It is apparent
from Egs. (2.5) and (2.3) that the wave functions ¥,y
and ¥, for scattering by strings carrying magnetic fluxes
that differ by an integer multiple N of 2##c /q, are con-
nected by

Yoy n(r,0)=eN% (r,0), (2.6)

while the wave functions ¥, and ¥_,, for scattering by
strings carrying opposite fluxes, are related by

Y_o(r,0)=1)4(r,—0) . 2.7

Taking into account the symmetry properties, Eqs. (2.6)
and (2.7), we can restrict our analysis of the scattering to

values of the parameter o within the range 0—+. The pa-
rameter in Eq. (2.3) is often defined as &= —qF /2w,
which is convenient when the analysis is restricted to the
scattering of a negatively charged electron. The wave
functions corresponding to the two conventions can easily
be transformed one into another with the aid of Eq. (2.7).
From Egs. (2.3) and (2.2) it also follows that the scatter-
ing of a particle of charge Zq by a string of flux F is
similar to the scattering of a particle of charge ¢ by a flux
ZF, where Z can be positive or negative.

Now it is convenient to transform the series given by
Eq. (2.5) into a closed form, which can be done by first
considering separately the terms involving positive and
negative values of m, then differentiating these sums with
respect to kr and using recurrence relations for the Bessel
functions to simplify the terms, and finally integrating
the resulting first-order differential equations (Aharonov
and Bohm, 1959; Kretzschmar, 1965b). The integral rep-
resentation is

lﬁa:%e —ikr cos@ f0°° dé.eigcost?{e—iara/ZJa_l(é-)+ei0+iﬂ'/2Ja(§)+eiﬂa/2[J1wa(§)+ei0—i1r/2‘]_a(§)]}

_ %e-—imz/2+i1r/2 sin(ma)e —ikr cos@ fk:o dgeigcose[H(ll_)a(é-)+ei9—iﬂ'/2H(_1iz(§)] , 2.8)
" .
where the right-hand side of Eq. (2.8) is equal to the series (s) 2e —im/4 . .
. —_ = " —ikr cosf+i6/2
in Eq. (2.5), for values of a within the range 0—1. The a == 172 sin(ma)e =7 O

first integral in Eq. (2.8) can be evaluated with the aid of
the formula

eiMm/2—16])

fooo ei;cosGJv(g)dgz , (2.9)

| sinf |
where 0< | 0| <7 and —1<v (Abramowitz and Stegun,
1965). If the range of the angle 0 were different, then ad-
ditional phase factors would have appeared on the right-
hand side of Eq. (2.9), thus ensuring the periodicity of the
integral with respect to 6. Repeated application of Eq.
(2.9) yields the first integral in Eq. (2.8) as

¢g)=e‘——ikr cosf+iad . (2.10)
We see that in a first approximation the effect of the en-
closed magnetic flux is to shift the phase of the unper-
turbed incident wave exp(— ikr cosf) by af. Since in the
presence of the magnetic string the field of the probability
current, Eq. (1.85b), corresponding to the wave function
¥, consists of vectors of magnitude %k /M oriented in
the — x direction, the wave function ¥ is referred to as
the incident state of the problem. The second integral in
Eq. (2.8) can be evaluated for kr >>1 by substituting the
asymptotic expression of the Hankel functions,

172

HY ()= |= exp |i , E>>1

m o
E=2V"%

(2.11)

which yields the scattered wave
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© i 52
X LZkr)l/zcos(O/Z)e d; ) 2.12)

In the region where (2kr)!/%cos(8/2)>>1, i.e., at large
values of kr and not too close to the negative part of the
x axis, the expression of the scattered wave, Eq. (2.12),
can be further simplified by using the asymptotic form of
the complex Fresnel integral. Then the wave function in
the asymptotic region becomes

ei0/2 eikr+i1r/4

cos(6/2) (2mkr)'/?’
(2.13)

which is valid for (2kr)!/2cos(6/2)>>1. Equation (2.13)
was first obtained by Aharonov and Bohm (1959), and al-
ternative derivations have since been reported by
Kretzschmar (1965b), Corinaldesi and Rafeli (1978), and
Berry et al. (1980). It is apparent from Eq. (2.13) that
the magnetic string shifts the phase of the incident plane
wave by af and gives rise to a scattered wave whose am-
plitude becomes very large in the vicinity of the half-
plane | 0| =.

In order to obtain 3, in the asymptotic region kr >>1,
but in the vicinity of the half-plane II where
(2kr)'”%cos(0/2) << 1, we must use in Eq. (2.12) the ex-
pansion appropriate for this region,

o] . .
f(2kr)1/2c’os(0/2) el =1m' %"t —(2kr)? cos(6/2) .

Ya=e —ikr cosO+ia@ __ sin(7a)

(2.14)
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Then the scattered-wave equation (2.12) becomes, in the
region kr>>1, 7— | 0| << (2/kr)'/?,

(s) __ —ikr cos@+i0/2
. =

—sin(wa)e

—im/4 —ikr cos6+i6/2

+ e sin(7a)e

17.1/2

X (2kr)'%cos(6/2) . (2.15)
We see from Eq. (2.15) that in the vicinity of the negative
part of the x axis the scattered wave does not become
vanishingly small, but rather converges for given kr and
| 6| —m to the finite limits *i sin(wa)exp(ikr), the sign
being negative for 0 near 7 and positive for 6 near —r.
‘However, the discontinuities in the incident wave [Eq.
(2.10)], and the scattered wave [Eq. (2.15)], occurring at
| @| =, cancel each other, and the expression of the
wave function in the region kr >>1, 7— | 0| << (2/kr)!/?
becomes

Yo =cos(ma)e® " + — 2

T e —im/4 Sin(,n_a)eikr+i0/2
T

X (2kr)12cos(6/2) ,
)1/2

(2.16)

where terms of the order of 1/(kr or smaller have
been neglected. Thus when |6 |-—m the square of the
wave function converges to |t,|%—cos’(ma) (Berry
et al,, 1980). As can be appreciated from Eq. (2.12),
the crossover between the asymptotic behavior, Eq.
(2.13), and the form of Eq. (2.16) occurs for
(2kr)'?cos(6/2)=1, ie., for the parabola 2kx =1
—k??% However, for a near +, the first term in Eq.
(2.16) becomes very small, and the principal contribution
to the wave function in the vicinity of the half-plane
| 6| = is given by the second term. Thus, when a— 7,
continuous change by 27a in the phase of the wave func-
tion occurs across the much narrower region
kx = —2(ky)*/7*(1—2a)?®. The wave function in the ob-
serving region is represented in Fig. 21 for several values
of the parameter a.

For a=0, the series equation (2.5) represents a free
plane wave,

Yo=e —ikr cos@ p 2.17)

and the pattern of the probability current consists of
straight lines, as shown in Fig. 22(a).

For 0<a < 5, the wave function ¥,, Eq. (2.5), can be
approximated in the vicinity of the magnetic string, where
kr << 1, by the expansion

e—in’a/Z(kr)a e—irr(l—_a)/Z(kr)l—a

e —(iﬂ'/Z)(1+a)(kr)l+a
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FIG. 21. Wave function ¢, for the scattering of a plane wave
by an infinite magnetic string of flux F, for several values of the
parameter a =gF /2m#c, in the plane kx = —20 of the observing
region. The square of the wave function at the center of the
pattern in the observing plane is |, |2=cos’*ma, and it con-
verges to 1 for large values of ky. The phase of i, on the two
wings of the observing plane oscillates around the values +a@
for 0<a< % and varies continuously from negative to positive

values. The phase of ¥, , is discontinuous by 7 at y=0.

e—(iﬂ/Z)(Z—a)(kr)Z——a

Volr,0)= ey

2°T(14a) 21=°T(2—a)

21122+ a)

G @B

Thus for a0 the wave function is vanishing on the string. The convergence of the series to zero at kr=0, Eq. (2.5), is
not, however, uniform with respect to a; since for a=0 the wave function has the value jy=1 at the origin. The first
terms in the expression of the polar components of the probability current, Eq. (1.85b), corresponding to the wave func-

tion v, are
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Mji®  (G—a)eos0+ma)  (krPcos®  (1—alkrsin(20+ma)
#k  TD1+alR2—a) 214220 (14 a)(2+a) 2r(1+a)T(3—a)
_ _akrsin0+7a) (kr)?>—2%cosf (2.19a)
2r2—a)F2+a) 222212 —a)l3—a) ’
Mj B (+ —a)sin(0+7a) (1—a)(kr)i—2@ B alkr)?@—1 (%+q)(kr)2“sin9
#k  T(14+a)TQ2—a) = 22727%2—a) 22TX1+4+a) 2*T(1+a)l(2+a)
 (1—adkrcos20+ma) _ akrcos20+ma) (3 —a)kr?sind (2.19b)

2I(14+a)I'(3—a)

Since the series expansion of the square modulus of the
wave function, Eq. (2.5), is

" ¢*= (kr)*® kr sin(0+ma)
aTeT Q21 4 q)  T(14a)T(2—a)
(kr)2—2a

+

— -, 2.20)
22-2012() ) (

(@)

-05

FIG. 22. Lines of the probability current j® for the scattering
of a plane wave by an infinite magnetic string of flux F, for
several values of the parameter a=qF /2#hc. (a) For a=0 the
wave function is a free plane wave, and the probability flows
along straight lines. (b) For very small positive values of a the
pattern of the current has a bifurcation point at kro=a,
@o=m/2—ma/2. (o) For values of a near + the bifurcation
point is situated at kry,=—[(1—2a)/32]In[(1-2a)/3"?],
6,,,=m/3. (d) For a= —;— the lines of the probability current are
symmetric with respect to the x axis. The differences between
(a) and (b), and between (c) and (d), are restricted to the regions
kr of the order of kry and kr,,, respectively.
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T 2r2+a)f(2—a)

22-2T7(2 —a)I'(3—a)

r

the dominant term at very small values of k7 in the ex-
pression of the azimuthal component of the velocity field
v(a)=j(a)/¢a¢’; is

fia
MvP=_ =
,

, kr<<1. (2.21)
Consequently the circulation of Mv(® around the string
is equal to —27#ia. For values of a outside the interval
0—+ it can be shown with the aid of Egs. (2.6) and (2.7)
that the circulation of the velocity field Mv'® is equal to
—2m#% multiplied by the difference between a and the
nearest integer to that value of a. For half-integer values
of a the circulation of Mv'® is equal to zero, as will be
discussed later.

According to Eq. (1.118) the field Mv'® is the sum of a
canonical contribution

(Y Ve — Ve Vie) / 2Yoy

and the term —qA/c. At extremely small values of kr
the canonical contribution is of the order of (kr)—2¢,
while the vector potential is of the order of 1/kr, so that
the angular component of the velocity field is dominated
in this region by the vector potential. However, the vec-
tor potential decreases faster than the angular canonical
component with increasing kr, so that these quantities be-
come equal at a certain point in the vicinity of the string.
For values of the parameter @ such that 0 <a <<, the
components of the probability current vanish at the point

kr0=a, 902%—7—72(—1‘
Then for values of k7 of the order of kr, the probability
current can be approximated by

(2.22)

Mj; ma
—_ Raal 2.2
P cos |0+ S (2.23a)
Mg ‘ma | o«
=si —_ - 2.23b
7k sin [0+ 2 o ( )

The fact that j**’=0 means that the lines of the probabili-
ty current have a bifurcation point, which separates the
incident probability flow from the current circulating at
very small distances around the magnetic string. It can
be shown by integrating Eqgs. (2.23) that the lines of the
probability current are given by ’
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21172

kx” , (2.24)

a

L8
a

—+ eZky’/a—Zao _

the bifurcation line corresponding to ao=1, where
x'=x cos(ra/2)—ysin(ra/2) and y’'=xsin(7ra/2)
+y cos(ra/2). The bifurcation of the probability current
in the case 0 <a <<+ is shown in Fig. 22(b), as given by
Eq. (2.24).

For values of @ such that 0 < 3+ —a << 3 the condition
j'® =0 yields the coordinates of the bifurcation point,

kryyp=— 1—2a In 1—-2a T

3172 —3T/2_’ 91/2#? . (2.25)

Then for values of kr of the order of kr,,, the probability
current can be approximated by

M*;a)

4
_— R 2.26
P y kr cos@ Fy kr cos20 , (2.26a)
Mjg o 1—2a¢ 8, .
7k = ;( 1 —2a)ln~—31—/-2~ + 3y kr sinf@
+ ikr sin26 . (2.26b)
3

The lines of the probability current obtained by the in-
tegration of Eqs. (2.26) are given by

kr 33/24[27—2.3%3%b(2 sinf+sin20)]'?
= 2(2sinf+sin26) ’

— (2.27)
k71,

the bifurcation line corresponding to the value of the pa-
rameter by=1. The pattern of the probability current in
the case O0<3 —a <<+, calculated according to Eq.
(2.27), is represented in Fig. 22(c). It can be shown that as
a consequence of the relation curlj'®=0, valid in the
field-free region, the lines of the probability current
emerging from the bifurcation point cross each other at
right angles.

For a= % the wave function, Eq. (2.5), can be written

in the form

2 ther cOSOL] . (2kn1/%cos(8/2) ;42
- +i60/2—in/4,
Y2 72 T i fo etd .

(2.28)

The wave function 1, has a nodal line at |0 | =, as
can be appreciated from Fig. 23, and apart from the phase
factor exp(i6/2) it is identical to the solution describ-
ing the scattering of a plane wave by a knife edge (Morse
and Feshbach, 1953, pp. 1383—1387). For |kx | <1,
| ky | << 1, the components of the probability current are
given by

122 kx

=TT + 3(k2Xx24k22)12 0 (2.29a)
L(1/2) __ ky .
b= (k22422 (2.29b)

The lines of the probability current obtained by the in-
tegration of Egs. (2.29) are given by
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FIG. 23. Scattering of a plane wave by an infinite magnetic
string carrying a flux F =m#ic /q. The string coincides with the
z axis, and the kinetic momentum 7k of the incident beam is
oriented in the —x direction. The probability distribution
| ¥1,2|% which is symmetric with respect to the direction of
propagation, has a nodal line on the negative part of the x axis

and approaches the value 1 in the region where
k[x +(x24+y?)"?]>>1.
co  (ky)®
kx == (2.30
2ky 2¢p )

where ¢, is a parameter. These lines are represented in
Fig. 22(d). We see that for = the lines of the proba-
bility current are symmetric with respect to the x axis.
Consequently the circulation around the string of the
velocity field Mv'!/? is equal to zero. This is due to the
fact that the phase of ¥, ,, is discontinuous by 7 at the
nodal plane || =, so that the contribution to the circu-
lation of the kinematical field arising from the canonical
part of Mv'!/? is in this particular case different from
zero, and thus can compensate for the contribution aris-
ing from the vector potential. More generally, the phase
of a wave function on the two sides of a nodal line can
differ by an integer multiple of =, and this is why the
constant N in Eq. (1.120) may assume integer as well as
half-integer values.

Now let us analyze the flow of the kinetic momentum
for the scattering of a plane wave by an infinite magnetic
string. As can be appreciated from Eq. (2.13), in the re--
gion of large kr and not too close to the plane |0 | =,
the wave function 3, can be separated into two com-
ponents representing, respectively, a pattern of constant
probability current flowing in the incidence direction, and
a radial flow of probability. If the incident wave is col-
limated by passing through a slit, then we can measure
the flow of probability and momentum in the radial wave.
The flow of the momentum density is described by the
tensor I'y,, Eq. (1.90b), representing the nth component
of the kinetic momentum passing through a unit area per
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unit time, in the direction k. If we introduce in Eq.
(1.90b), the scattering term appearing in Eq. (2.13), we ob-
tain

#k sin*(7ma)
27Mr cos¥(6/2)’

the other components of the tensor I'®) being negligible in
this region. Thus at large kr the momentum current per
radian rI,, converges to a certain finite limit, which sug-
gests that there is a certain amount of kinetic momentum
exchanged between the incident wave and the magnetic
string. In order to see this, let us consider the tensor I''®’
corresponding to the total wave, Eq. (2.5), in the vicinity
of the magnetic string. (@)

Y= krs>>1, |0| <7, (.31

The components I'\%,I(%
describing the radial flow of momentum, obtained by sub-
stituting in Eq. (1.90b) the expression of v, are

ML akr)®@=2 2a(1—a)(kr)~'sin(0+7a)
#k?  22TX(14a) F(1+a)l2—a) ’
(2.32a)
M3 2a(1—a)(kr)~! cos(0+ma) (2.32b)
#k: r1+a)l2—a) ' '

However, we are interested in the radial flow of the com-
ponents of the momentum along fixed directions, say x
and y. These components, given by I'‘%=cosoI'\%
—sinO'%), F‘,f:sin@l‘ﬁ‘,”«l—cos@l",‘é), are

AMTY _ alkr?®*=2cosf®  2a(l—a)(kr)”sin(ma)
#k? 22271 4+-a) rl+a)l'2—a) ’
' (2.33a)
2MI‘(,;’” _ a(kr)®**=%sinf = 2a(l—a)(kr)~!cos(ra)
#k? 22T (1+a) Fl+a)l(2—a) ’

(2.33b)

where kr <<1. Then the momentum current flowing out
of a cylinder of very small radius r, centered on the
string, is equal to

2 sin’(mra )#?k
. M ’
2 sin(mra) cos(ma )k
M

According to Egs. (2.34), no momentum is exchanged be-
tween the incident wave and the string for a=0. For
=+, when the wave function is symmetric with respect
to the y axis, there is a maximum flow of the x com-
ponent of momentum, and no flow of the y component of
momentum.

We have previously seen that for kr << 1 the lines of
the probability current are circling around the magnetic
string. The fact that the tensor I''®’ of the momentum
flow is not equal to zero shows that in the vicinity of the
magnetic string the wave function has large incoming and
outgoing radial components which interfere to make up a
radial standing wave. How it is possible that a flux distri-
bution of vanishingly small radius should impart a finite

[ ri@rdo= (2.34a)

[ rigrdo= (2.34b)

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

amount of momentum to the incident charged particles is
a question that will be further discussed in Sec. IL.E.

In the region near the x axis the wave function cannot
be separated into incident and scattered components, and
we can measure only the total wave, Eq. (2.5). The wave
function in the observing region [Eq. (2.16)] is in fact just
what we would expect to result from the interference of
the half-waves passing by the opposite sides of the string.
As shown by Morse and Feshbach (1953, p. 1385), the
half-wave u . crossing the positive part of the y axis has,
in the absence of the magnetic string, the form

1 _: . +(2kr)2c0s(6/2) ;2
ikr cosf m/4f e't'de
-

u ( )— e
+ ’,6
77_1/2

(2.35)

where the plus sign applies to 0 <6 <7 and the minus
sign to —7<6<0. The asymptotic behavior of u_ in
the region kr >>1, | 0| < is

e c0s0 oikr+im/4
e THTeosv__ , O0<O<m
v — (8mkr)' /2 cos(6/2)
+ ik +im/4 (2.36)
—7<0<0, ’

(87kr)' 2 cos(6/2)°

so that u, is indeed concentrated at positive angles 6.
The half-wave u _ crossing the negative part of the y axis
is related to u . by

u_(r,0)=u,(r,—0). (2.37)

It is apparent from Egs. (2.36) and (2.37) that in the ab-
sence of the string the waves diffusing from the incident
components which pass by opposite sides of the string
cancel each other, so that the sum of the two half-waves
is simply the unperturbed incident state,

U, (1,0)+u_(r,0)=ekreosd (2.38)

However, in the presence of the magnetic string the phase
of the half-wave crossing the positive part of the y axis is
shifted by 7a in the vicinity of the plane |6 | =, while
the phase of the half-wave crossing the negative part of
the y axis is shifted by —a, so that the total wave func-
tion becomes
172
2
kr ) ’

(2.39)

¢a=ei“"u++e_i”“u_ , kr>1, 71— |0 «<

An evaluation of the integrals appearing in Egs. (2.35)
and (2.37) with the aid of Eq. (2.14) does indeed yield an
expression equivalent to the asymptotic form, Eq. (2.16).
This shows that in the observing region the effects of the
magnetic string arise from flux-dependent phase shifts
followed by quantum interference.

When we have represented the enclosed flux by a mag-
netic string, we have implicitly assumed that the wave-
length of the incident particles is large compared to the
radius of the magnetic filament. Although this is hardly
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the case in actual experiments, physical analogs of the
scattering of a plane wave by an infinite magnetic string
are encountered in the scattering of surface water waves
by an irrotational vortex (Berry et al., 1980), or in the
behavior of an electron in a crystal that includes a screw
dislocation (Kawamura, Zempo, and Irie, 1982).

B. Scattering of a wave packet
by an infinite magnetic string

It is apparent from the analysis developed in the
preceding section that the combined effect on an incident
plane wave of the flux-dependent phase shifts and quan-
tum diffusion is to produce a rather complicated pattern
of probability and momentum. In particular, the scatter-
ing of a plane wave by an infinite magnetic string is
characterized by a nonzero exchange of kinetic momen-
tum between the incident plane wave and the string, re-
flected in Eq. (2.13) by the term proportional to
exp(ikr)/(kr)!/2. This term is frequently interpreted as
the amplitude of the scattering cross section of the in-
cident particle by the magnetic string (Aharonov and
Bohm, 1959; Peshkin, Talmi, and Tassie, 1961; Corinal-
desi and Rafeli, 1978; Henneberger, 1980; Peshkin,
1981b). Since the space is free of forces except at the
magnetic string, the presence of the incident particle in
the region of the string is essential for such an exchange
to occur. In order to distinguish between the phase ef-
fects and the momentum effects of -enclosed fluxes, we
shall consider in this section the scattering of a wave
packet of finite extension by a string of magnetic flux.
We shall see that the amplitude is an exponentially small
function of the square of the ratio between the impact pa-
rameter and the width of the packet, so that the scattering
amplitude becomes vanishingly small as the width of the
packet goes to zero. This means that the exchange of ki-
netic momentum encountered at the scattering of a plane
wave is a secondary effect preceded by the diffusion and
interference of the phase-shifted components of the in-

%o

FIG. 24. Scattering of a wave packet of finite width by a mag-
netic string coinciding with the z axis. The effect of the mag-
netic string is to shift the phase at the center of the incident
packet by an amount proportional to the enclosed flux. The
amplitude of the radial scattered wave is an exponentially small
function of the square of the ratio between the impact parame-
ter and the width of the packet, and it becomes vanishingly
small as the width of the packet goes to zero.

cident wave. In the same time, the phase at the center of
the incident wave packet is progressively shifted by an
amount proportional to the enclosed flux, a result that is
consistent with the quasiclassical analysis of the problem.
Thus the observable effects of enclosed fluxes arise from
phase shifts followed by interference, and primarily in-
volve no changes in the kinetic momentum of the incident
particles.

We shall assume that the incident state is a wave packet
of width 8, centered at time =0 at the point 7,6, and
traveling with momentum 7k in the negative x direction,
as shown in Fig. 24,

(r'cos®’ —FocosB,)>+ (r'sind’ — Fosind,)>

1 .
W (7',0,0)=———exp |ia0' —ikr'cosO —
8,a ’)T1/28 Y

We shall determine the time evolution of the wave packet
in the presence of the magnetic string with the aid of the
Green’s-function technique, which yields the wave func-
tion at the time ¢ in the form

Ys.o(r,0,0= [ Golr,0,6;r",6,00Ws o(r',6,0)r'dr'd6’ .
(2.41)

In general, the Green’s function is a sum of products of
eigenfunctions over the complete set of states of the given
problem. The eigenfunctions for a particle of charge g,
mass M, and energy #*k?/2M, interacting with a magnet-
ic string carrying the flux F =2nfica/q, are
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5 (2.40)

1

o
a2’ Im—al (kr)eimO—ifik’t/2M

(2.42)
where the canonical momentum m is an integer. Conse-
quently, as reported by Kretzschmar (1965b), the Green’s
function for the scattering by an infinite magnetic string
is

G,(r,0,t;r',60',0)

1

=_2_77 2 fkkolm_a|(kr)J|m_a|(kr’)

m = — o

Xe —itik2t/2M +im (6—6') . (2.43)
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An equivalent, but less tractable form of G, was obtained Gy(r,0,t;r',0',0)
by Gerry and Singh (1979) with the aid of the path-

integral formalism. An integration over k in Eq (2.43) =__ll_e(iM/2ﬁt)(r2+r’2)¢a Mrr'! 0—@ (2.45)
can be carried out with the result 27rtit ’ #ikt :
G,(r,6,t;r',0',0) Thus we can use Egs. (2.6) and (2.7) to infer that
— M iMpm ) Goin(r,0,t;r,0,0)0=eN =G (r,0,t;r',6',0) ,
2t where N is an integer, and
x 3 eurimealy, [Mﬁrtr G _a(r,0,657,0,0)=Golr, 6,13, —6,0) .
me=—
oim(0—6) (2.44) Moreover, we can use the asymptotic expression of v,

Eq. (2.13), to obtain the asymptotic form of the Green’s
By comparing the expression of G, Eq. (2.44), with the  function for Mrr'/#it >>1, (2Mrr’/#t)! *cos(6—6')/2

series, Eq. (2.5), we find that >>1 as
|
lM . 2 12 ’ ’ 1 ’
Gy=— - exp{(iM /2#it)[r*+r'*—2rr'cos(0—0")] +ia(6—6)}
172 i(0—6)/2 2
M . e exp[(iM /2%t)(r* +r? 4 2rr’ )—177/4] (2.46)
a | SRR 6= e /2] (873172 :

where |0—60'| <7 and 0<a <1 (Kretzschmar, 1965b). It is apparent from Eq. (2.46) that the first term of G, is pro-
portional to the free-particle Green’s function,

iM 2
G . (iM /2#it)(r—1') , (2.47)
0 2mtit ¢
so that we have approximately
Go~Goe'®9=9  |0—0'| <. (2.48)

On the other hand, for Mrr'/#it >>1 and 7m— |0—0"| << (2%t /Mrr')'/> we obtain from Egs. (2.45) and (2.16) the
Green’s function

— M s pomr2 2 om
Gy= e cos(ma)
u IMrr 172 0—o'
—Tﬁtsin(mz)exp[(iM/Zﬁt)(rz—}—r'Z—{—2rr')+i(9—9')/2+i77'/4] —ht” cos [ == |, (2.49)
m

where 0 <a < 1. Consequently, when 7— | 0—0' | << (2%t /Mrr')'/? the Green’s function is approximately
Go~Gycos(ma) , (2.50)

and in particular G/, has a nodal surface at |0 —6' | =7.

Assuming now that the width 8 and the impact parameter d =7sinf, of the incident packet are small compared to
the distance 7y, 8 << 7o, d <<7o, we shall expand the cosine functions appearing in Eqs. (2.40) and (2.46) in powers of 6,
and 0’ up to second-order terms. In this approximation the expression of the initial state becomes

02 —20'0,40%

v oo ) N 02 r' +r0—2r 7o [1— >
5,alr’,0', )=F72—gexp ial —ikr' |1— - 252 , 2.51)
while the scattering term of the Green’s function contains the factor
(0—6)/2 1(6—6)/2
= ¢ (2.52)

cos[(6—0')/21 ™ cos[(6—00)/2]

Since the major contribution to the integral in Eq. (2.41) arises from the region near the center of the wave packet
represented in Eq. (2.51), the integrations over dr’ and d@’ can be extended without noticeable error from — oo to oo.
The result of the integration is then
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1 P e T e i0/2
W= 14— 14— sin(ma) ————
VR l k8? M&? cos[(6—8y)/2]
~. 2
_ #kt F56%
ikr+im/4 1 7202 imk2 THro="r 7
—_— '—i(1—ig” — — , 2.53
e T TR TV 2a? |10 i 233
a A
*us
where As shown in Fig. 24, the scattering contribution, Eq.
1 ~  Fo/k8? i(+—a)? ( (2.55), represents a cylindrical outgoing wave packet of
e'=(3—a)b — 2 T A~ — 5 0 (2.54a) width 8 emerging from the origin at the time
1+i7o/kd 2kro(1+17o/kd%) ts =MF7o(1—03/2)/#k, and centered at the time ¢ > ¢, on
and r=%#k(t —t;)/M. If the center of the incident wave
., 4t r packet lies in the vicinity of the x axis, such that d <<39,

g'= — , (2.54b)
M&*+itit (k& +iFy)(1+ifit /M?)

and where we have neglected terms of higher order than
quadratic in the angles 6,,6’. Now in order for the
spreading of the wave packet to be negligible for path
lengths of the order of 7, it is necessary that 7,/k8% << 1.
Assuming further that k7; >>1, the quantities defined in
Egs. (2.54) are negligible, |&'| <<1, |€”| << 1, and the
expression of the scattered wave becomes

1 ) _7282/282 ei0/2 eikr +im/4
we o 0vo -
ba=— 7735 sin(male cos(6/2) (2mkr)1”
~ 2
r 47 _ Bkt 760
exp | iAK M 2
P\ " oM 28
(2.55)
.|
. 1 . .
Va0 = a1 i /g P | 20 00—

We see from Eq. (2.56) that the phase at the center of the
incident wave packet is progressively shifted by an
amount proportional to the enclosed flux, as predicted on
the basis of the quasiclassical approximation. Thus the
cross section for the scattering of a localized particle by
an infinite magnetic string converges to zero, and the ob-
servable effects of enclosed fluxes arise in this case from
phase shifts followed by quantum interference.

In the analysis of the quantum effects of the fluxes it is
conventionally assumed that the charged particles interact
with classical electromagnetic distributions. However, in
principle, the quantum fluctuations of the electromagnet-
ic field affect the particle, by producing uncertainties in
the phase. The question arises then, to what extent are
the quantum effects of the fluxes influenced by the zero-
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ik’

then as pointed out by Kretzschmar (1965b), the scatter-
ing of the wave packet, Eq. (2.55), approaches the scatter-
ing of the plane wave, Eq. (2.13). On the other hand, if
the impact parameter d is large compared to the width 5,
such that d >>§, then the scattering amplitude becomes
exponentially small because of the factor exp(—d?2/28?).
Thus, in the limit of small widths 8, the amplitude of the
scattered wave goes to zero, and in particular this means
that there is no exchange of kinetic momentum between
the localized wave packet and the magnetic string (Olariu
and Popescu, 1983).

Since the first term in Eq. (2.46) is proportional to the
Green’s function of a free particle, the application of that
part of G, on the initial state, Eq. (2.40), yields the wave
function at the time ¢ of a free wave packet, multiplied by
the factor exp(iaf),

2

r cos — FocosBy+ —% + (7 sinf —Fosinf,)?

2M 28%(1+itit /M8?)

(2.56)

=

point fluctuations of the electromagnetic field? Mitler
(1961) has shown that, according to quantum field theory,
the presence of the enclosed fluxes will be manifest by
shifts of the interference fringes with respect to the no-
flux case, and moreover this effect will be masked by the
vacuum fluctuations to the same extent as the ordinary,
no-flux interference pattern. It is consistent, then, to as-
sume in our analysis that the electromagnetic potentials
can be specified as given functions of position and time.

C. Quantization of angular momentum
in the presence of a magnetic string

The quantization of angular momentum for systems
possessing spherical symmetry can be regarded as a conse-
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quence of the commutation relations between the angular
momentum operators. If such a spherically symmetric
system is intersected by an infinite magnetic string pass-
ing through the center, the symmetry of the newly formed
system will be partly spherical and partly cylindrical.
While the commutation relations between components of
the angular momentum operators are not affected in the
field-free region outside the magnetic string, these rela-
tions include additional flux-dependent terms when ap-
plied in the region of flux inside the magnetic string. We
therefore expect that the space of the kinetic angular
momentum eigenfunctions of a system in the presence of
a magnetic string should be different from the conven-
tional space of the spherical eigenfunctions.

In this section we shall determine the eigenstates of a
charged particle bound by an attractive potential U in the
vicinity of an infinite magnetic string, a problem con-
sidered by Kretzschmar (1965c). Assuming that the po-
tential U is spherically symmetric, U = U (), the Hamil-
tonian of the particle of charge g and mass M, in the
presence of a magnetic string placed along the z axis and
carrying the flux F, is given in spherical coordinates by
A~ #

Ge™ " oM

2 A
% &ai__l_z_,\g +U(), (2.57)
s s Os »”

“where 3,2, is the operator of the total kinetic angular
momentum, given by

Az___1 98
" sinf 06

_1
sin%0

_; 9
d¢

sinB-a—

a6 |

—a

(2.58)

In this section ~ represents the spherical distance, 6 is the
spherical polar angle, and ¢ is the azimuthal angle. The
eigenfunctions of the Hamiltonian, Eq. (2.57), can be
determined as products of radial and angular momentum
eigenfunctions,

ﬁU,a¢U,a=EU,a¢U,a ) (2.59)

#’U,a:'@U,aYgf,zr)n(O’(P) .

Moreover, the eigenfunctions of the kinetic angular
momentum operator

ALY —AA+ DY,

(2.60)

(2.61)
are also products of functions of 6 and ¢ of the form
Y38, =P) o(0)e™? . (2.62)

Since the parabola A(A+1) is symmetric with respect to
the value A= —+, we choose to describe the eigenvalues
defined in Eq. (2.61) by the branch A> —+. The condi-
tion of single valuedness of the wave function renders the
z projection of the canonical angular momentum m an in-
teger. Then the 0-dependent part of Y&",),, is a solution of
the equation

1 9

sinf 96

. aPk,a
sinf 30 l

+ (2.63)

)2
A(Hl)—(—”%]ma:o.
sin“6 ’

The differential equation (2.63) can be transformed by a
change of variables x =cos6, and a change of function

1 |m—al|/2
—X
Pra= lx Upna
into the form
d%u, du, .
2 , & Aa
(1—x7) ) ——2(x+|m—oc|)T

FAA+Duya=0. (2.64)

The independent solutions of Eq. (2.64) can be expressed
as linear combinations of the hypergeometric functions

Fl—=MA+1] |m—al| +1](1—x)/2]

and

(Q—x)"Im=elF[_A—|m—a|,A+1—|m—a]| |1—|m—a]| |(1—x)/2].

The eigenfunctions are those solutions of Eq. (2.63) which fulfill the boundary condition that P, , vanish on the string,

i.e., Py o=0at x ==*1. The solution
|m—al /2

L F

'+ |m—al)

1—x
14+x

P[lm_al(x)=

—AA41

1—x
2

(2.65)

|m—a| +1

is equal to zero at x=1, while the other independent solution is divergent at x=1 and therefore cannot be an eigenfunc-
tion. An equivalent expression of the function in Eq. (2.65) can be obtained by using the formula relating the hyper-
geometric solution about one singularity to the solution about the other singularity (Morse and Feshbach, 1953, p. 546),

P;fm—al(x)z r(|m—al)

1—x

T(|m—a| +A+DI(|m —a| —A)

1-x2 |m—al /2

4

N—|m—a])
D(—AT(A+1)

+
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14+x

fllm—a|+k+l,fm—a|—?»'|m—a|+1

|m—al /2

F | —AA+1

1—|m—a] >

1+x]

(2.66)

14+x
2
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It is apparent from Eq. (2.66) that P; ™ ~¢| is divergent
at x = —1, unless the coefficient of the first term van-
ishes. Since we have chosen to describe the eigenvalue
AMA+1) by the branch A > — %, the aforementioned coef-
ficient can be zero only at the poles of I'( |m —a | —A)
so that the eigenvalues are given by

A=|m—a|+N, N=0,1,2,...". (2.67)

We see that while the canonical angular momentum is
unaffected by the string, the eigenvalues of the total ki-
netic angular momentum have an explicit dependence on
the amount of enclosed magnetic flux. The eigenfunc-
tions of the total kinetic angular momentum operator are
thus

Y§e), ~Py Im =2l (cosh)e™ . (2.68)

The ensemble of allowed values of A and m is shown in
Fig. 25. For noninteger a there are two intercalated
ladders of eigenvalues A, defined by At =1—(a—[a]),
2—(a—[al),..., and A~ =a—[a],l+a—[al ...,
where [a] denotes the integer part of a, a<[a]<a+1.
The “positive” ladder is generated by those values of m
for which m —a >0, while the “negative” ladder corre-
sponds to the values m —a <0. The admissible values of
m are [a]+1,[a]l+2,...,AT+a—1, At 4+a for eigen-
values AT which belong to the “positive” ladder, and
a—A",a—A"+1,...,[a]l—1,[a] for eigenvalues A~!
which belong to the “negative” ladder. The parity of the
eigenfunctions is (—1)**% and (—1)*~¢ for the “posi-

m-[ o]

4 °

3 ° °

2 4 o o °

1 4 ° ° ° °

0 e
-1 3 ° o °
_'2_ o o o
-3 ° o
-1 °

FIG. 25. Ensemble of the eigenvalues A of the operator of the
total kinetic angular momentum, and of the eigenvalues
m —[a] of the z projection of the kinetic angular momentum,
where [a] is the integer part of a. For noninteger a there are
two intercalated ladders of eigenvalues A, situated at
At=1—(a—[a])2—(a—[a]),..., and A~ =a—[al,l+a

—[al, ..., respectively. The admissible values of m
are [a]+1,[a]+2,...,AT+a—1,A* +a for eigenvalues A+
belonging to the first ladder, and a—A " ,a—A~

+1,...,[a]—1,[a] for eigenvalues A~ belonging to the second
ladder.

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

tive” and “negative” ladders, respectively.

The pattern of kinetic angular momentum eigenvalues
shown in Fig. 25 is different for noninteger a from that
of conventional systems with true spherical symmetry.
This is due to the fact that the commutation relations be-
tween operators of the kinetic angular momentum involve

-additional, flux-dependent terms when applied inside the

magnetic string, as will be shown in Sec. ILE. In the re-
gion outside the magnetic string, the operators of the ki-
netic angular momentum are

A, =L, acosdcosp (2.69a)
sin@

A, =L, acosfdsing (2.69b)

_ sinf

A,=L,, (2.69¢)

where the operators of the canonical angular momentum
are :

i icosfcosp O

= , 2.
L.=i sinp—— 8 ) Sin® 3¢ (2.70a)
~ Osinp 0
) S M 2.70

y = iCospy 89 + sin@ dp ’ (2.70b)
L,= 9 (2.700)
d¢

Let us now determine the result of the operators
A + _—Ax —HA and A_ -—A ——zA on the eigenfunctions,
Eq. (2.68). Kretzschmar (1965c¢) has shown that

ALY, (0,0)~A+a—m)'2Y i, 1(6,9), m~[al .

(2.71)

This means that 7\ acts as a raising operator, except at
the upper ends of the vertical ladders with respect to m
represented in Fig. 25. While A Y;LJr A4 terminates

the upper vertical ladder, it can ‘be shown that the func-
tion A Y(“ a] is different from zero and has singulari-
ties at 6= O and 6=1r, so that it cannot be a superposition
of the eigenfunctions corresponding to the particular
value of A~ under consideration. _As pointed out by
Kretzschmar (1965c), the function A Y( @ [a] €215 how-
ever, be expanded over a series of states mvolving all the
values At of the complementary ladders. Analogously we
have

A_Y®.(0,0)~(A—a+m)2YS%, _1(6,p),

m=#£[al+1, (2.72)
which means that A _ acts as a lowering operator, except
at the lower end of the vertical ladders for the canonical
momentum m. While A_Y,_ . =0 terminates the
lower vertical ladders, it can be shown that the function

A_ Y, . la]+1 is different from zero and has singularities

at 6=0 and 6=, so that it is not a superposition of the
eigenfunctions corresponding to the value of AY under

consideration. In fact, A_ Y+ la]+1 is a superposition of
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states involving all the values A~ of the complementary
ladders.
The Aharonov-Bohm effect of a magnetic string can be

regarded as a consequence of quantization of the projec-

tion along the string of the canonical angular momentum
in integer multiples of # (Tassie and Peshkin, 1961;
Kretzschmar, 1965a; Peshkin, 1981b). The vector poten-
tial of a magnetic string is singular on the string; conse-
quently the space accessible to the particle is multicon-
nected, and the eventual use of multivalued functions can-
not be excluded a priori. However, since an infinite mag-
netic string is the idealized limit of a physical distribution
of magnetic moments, which preserves the single valued-
ness of the space, it still turns out that the wave functions
must be single valued (Merzbacher, 1962). For example,
an infinite magnetic string can be regarded as a string of
finite length L, in the limit when L, becomes very large.
Assuming that the string of flux F is oriented along the z
axis and has its middle point at the origin, the magnetic
field in the region near the center of the string goes to
zero as 1/L3, while the distribution of the return field
extends up to distances of the order of r~L, from
the string, such that the total. return flux

B,(r,z)2mrr dr = —F is equal in magnitude and oppo-
site in sign to the flux inside the string. Let us assume
that a cylindrical wave packet is approaching the magnet-
ic string from the region of large r, so that the velocity
field, Eq. (1.118), of this packet has in the asymptotic re-
gion r>>L, a negative radial component of magnitude
#ik and a certain angular component my#i/r, as shown in
Fig. 26. As the cylindrical wave packet travels toward
the string, each section of the packet will be acted on by a
certain angular force due to the return magnetic field.
The quasiclassical change in the kinetic angular momen-
tum A(r,z) of a section of the cylindrical packet, situated
at height z, due to the torque exerted by the return field is
given by

dA(r,z)

g = éCLrBz(r,z) s (2.73)
whence we obtain by integration

Mr)—mo=-L [ " rB,(r2dr . .74

Now the lines of the vector potential Ay of the finite-

length magnetic string are circles centered on the z axis,
which are parallel to the x,y plane. Since at very large
distances r >>L, we have AL0,9~1 /r%, we can express

the vector potential with the aid of Stokes’s theorem as

1 ©
Ap,olr2)=—— [ Burzrdr. (2.75)
Then from Egs. (2.74) and (2.75) it follows that
Mr2)+SLra orna=m, , (2.76)

which means that the canonical angular momentum is a
constant independent of the position » of the cylindrical
packet, having the same value for any section z of the
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FIG. 26. Effect of the return magnetic field of a finite-length
string on an incident cylindrical wave packet converging toward
the string. The kinetic angular momentum m, of the section of
the radial wave depends on the distance to the string and on the
height of the section under consideration. However, the action
of the return field is exactly compensated for by a correspond-
ing variation of the vector potential of the string, a cir-
cumstance which renders the z component of the canonical an-
gular momentum of the packet a constant of motion.

packet. Thus, while the kinetic angular momentum of a
section of the radial packet depends on both the distance
r to the magnetic string and the height z of the section
under consideration, the action of the return field is exact-
ly compensated by the corresponding variation of the vec-
tor potential, a circumstance which renders the canonical
angular momentum, Eq. (2.76), a constant of motion.
Since the state of the particle is not affected by the finite-
length string at very large distances » >> L, the canonical
and kinetical angular momenta are identical in that region
and assume values that are integer multiples of #. How-
ever, the canonical angular momentum m being a con-
stant, it follows that m is indeed an integer throughout
the space.

From the quantization of the canonical angular
momentum it follows that the eigenfunctions of a particle
in the presence of the finite-length string are proportional
to exp(im0), where m is an integer. Then in the adiabatic
limit of large lengths L, the eigenfunctions of a particle
of kinetic energy #°k%/2M are

WJ“ (kr)eimO=iB2M 0,11, Q77)
where
s=m + %q? frw B,(r,z)rdr . (2.78)

When Ly— oo these eigenfunctions converge toward the
eigenfunctions for the infinite magnetic string, Eq. (2.42).
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D. Scattering of plane waves
by closed magnetic strings

We have mentioned in the preceding section that the re-
turn field of a segment of magnetic string becomes van-
ishingly small as the length of the string becomes very
large. However, it is not permissible to neglect the return
magnetic field a priori, because although the magnitude of
the field becomes very small for long strings, the spread-
ing of the return field increases indefinitely. In order to
show that the Aharonov-Bohm effect persists even if the
return flux is taken into consideration, we shall analyze in
this section scattering by a pair of infinite strings parallel
to the z axis and carrying opposite fluxes, and, further,
scattering by a circular magnetic string.

First let us consider a pair of parallel strings that inter-
sect the plane z=0 at x =0,y =+D,/2. We shall assume
that in the absence of the magnetic strings the incident
state is a wave packet of width 8 and kinetic momentum
#k oriented in the — x direction, as shown in Fig. 27, the
crest of the packet being situated at the time ¢=0 at
X =x0<0,

Vs(x,,t)= 1/41 172 : 1 2
w4812 (14 ifit /M%)
) itk (x +Akt /M —x)?
Xexp | kX = T 26k 1 i /M)
(2.79)

In the presence of the magnetic strings the wave function
in a certain plane x =x, situated behind the strings can
be obtained from the unperturbed wave function W
through multiplication by a phase factor which takes into
account the magnetic fluxes enclosed in the two strings;
the subsequent evolution of the state thus determined is
that of a free wave packet. It can be shown that this ap-

N

z

FIG. 27. Wave packet of width 8 and kinetic momentum tik
oriented in the —x direction, incident on a pair of infinite
strings parallel to the z axis and carrying opposite magnetic
fluxes.
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proach, which is similar to the techniques used in the
computation of optical diffraction patterns, yields the
correct wave function in the vicinity of the shadow of the
two strings. As we have discussed in Sec. I.A, the quasi-
classical flux-dependent shift of the phase of the wave
function is equal to the path integral of the vector poten-
tial, (q/%c) | Adr, evaluated along the lines ' of the
probability current connecting the incidence region to the
plane x =x,. The vector potential of the two strings has
the components

F(y —Dy/2)
T 2n[x2+(y —Do/2)%]
F(y +Dy/2)
T oalx 4y + Do 27
Fx

2a[x24(y —Dy/2)%]

. Fx
2m[x24+(y +Dy/2)%]

the string at y =D, /2 carrying the flux F and the string

at y =—Dy/2 carrying the flux —F. It can be shown
that the lines of the vector potential Ap constitute the
family of circles shown in Fig. 28, which are orthogonal

to the circles of arbitrary radius passing through the
points x =0,y = +D, /2. Since the space is free of forces,

ADO,x =

(2.80a)

ADO’},Z

) (2.80b)

r

X=Xg<0

D/2 |Ade Dy/2 y
“gf/he

FIG. 28. Phase shift produced by a pair of parallel strings car-
rying opposite magnetic fluxes +F. The phase shift is equal to
the integral (g /#ic) | Adr evaluated along the lines of the
probability current I' connecting the incidence region to the
plane x =x,. The lines of the vector potential constitute a fam-
ily of circles which are orthogonal to circles of arbitrary radius

- passing through the points x=0, y =+D/2.
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the integration paths mentioned above are straight lines
connecting the incidence region to the plane x =x,. If
the position of the plane x =x; is such that —xy>>D,,
then the shift of the phase of the wave function, obtained
by integration of the component Ap, , with respect to x,
Eq. (2.80), is equal to —qF/#ic=—2wa in the region
x =X, |y | <Do/2, and is zero in the complementary re-
gion |y | >Dy/2, as shown in the lower part of Fig. 28.
Then in the presence of the two strings, the wave function
in the plane x =x has the form

VYp,alx,9,0)= WRa(y,O)
(x —xp)?
X —ikx ————— |, (2.81)
exp i 257
where
e~ %™ |y | <Dy/2 (2.82a)
Ra(y’O):
1, |y|>Dy/2. (2.82b)

The evolution of the state, Eqs. (2.81) and (2.82), in the
region x <xg,? >0 is essentially that of a free wave pack-
et. Since the free-particle propagator, Eq. (2.47), is the
product of the propagators for the x and for the y direc-
tions, and since the state described by Eq. (2.81) is also a
product of a function of x times the function R,(,0), the
state at the time ¢ can be obtained by considering
separately the propagation in the x direction and the dif-
fusion of R, in the y direction. The component of the
wave function at the time ¢ is

Ro)= [ Go3,1;3",0R(y",0)dy’ , (2.83)
where
v 17 o
1l 1 "2
= [— —(y — 2.84
G, Py exp Zfit(y y') ( )

It is convenient in the calculations to write R, =1-+T, so
that the application of the Green’s function to the con-
stant term reproduces the unity constant, while the term
T, yields the scattering contribution. Thus the y com-
ponent of the wave function in the vicinity of the negative
part of the x axis is given by

2e —ira—3iw/4

R, (y,0)=14=—F——sin(ra)
w

(M 200V 2Dy /2—y)

)ei§2d§ . (289

(M 260V U ~Dy/2—y

The motion of the particle in the x direction simply de-
scribes the propagation of the wave packet (in the —x
direction) whose crest at the time ¢ is given by

#ik

Xc =x0——ﬁt .

Since the process of diffusion in the y direction is in gen-
eral slow compared to the propagation in the — x direc-
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tion, we can now neglect the constant x, in the above
equation, so that the enclosed fluxes produce in the vicini-
ty of each of the strings an Aharonov-Bohm effect in-
dependent of the presence of the other string,

R,=e™cos(ma), y=+Dy/2, 0< —x, <<kD} .
(2.86)

However, as the wave packet is traveling along the —x
direction, the quantum diffusion along the y direction
mixes contributions arising from the vicinity of both
strings, and thus produces an interference pattern charac-
terized by a surface spanning the strings and extending it-
self in the — x direction up to distances of the order of
kD3, as shown in Fig. 29.

After a long time ¢ when — x, >>kD3, the wave func-
tion, Eq. (2.84), has in the vicinity of the negative part of
the x axis the asymptotic expression

kD(z) 172

_xc

sin(ma)

2 172
R, (y,t)=1+ —‘ e —ima—3im/4,

(2.87)

where — x, =%kt /M. We see from Eq. (2.87) that the ef-
fects of the pair of magnetic strings are still periodic with
the amount of enclosed flux, but the scattering term has
in this case the conventional form of a cylindrical outgo-
ing wave in all asymptotic directions.

While the connection between the parallel strings carry-
ing opposite fluxes is supposed to lie at infinity, a circular

FIG. 29. Scattering of a particle of charge g and mass M by a
pair of parallel strings carrying opposite fluxes of magnitude
F =1fic/|q |. The incident state was assumed to be a Gauss-
ian wave packet propagating in the — x direction and uniform
along the y direction. The strings are parallel to the z axis and
intersect the plane z=0 at x=0, y =+D,/2. The diagram
represents the probability distribution | R, |? on the crest
xc=—*%kt /M of the packet, at successive positions. The flux
enclosed by the magnetic strings affects the probability distribu-
tion mainly in the vicinity of a surface, shown in cross section
by the dotted line, which spans the strings and extends in the
— x direction up to distances of the order of — kD3.
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magnetic string represents an example of an enclosed flux
restricted to a finite region. Formulas describing the
scattering of charged particles by a toroidal distribution
of magnetic flux have been reported by Lyuboshits and
Smorodinski (1978). We shall see that the effects of the
enclosed flux are observable mainly in the vicinity of a ro-
tation surface spanning the loop of flux, while the effects
at large distances are attenuated by quantum diffusion.
Let us assume that a circular magnetic string of radius p,
and carrying the flux F'is perpendicular to the direction
of incidence of a wave packet of width 6 along the x axis,
and which is uniform in the y and z directions, as shown
in Fig. 30. The incident wave packet is described by

1 1
Ws(x,y,2,t) =
S w4812 (1+ifit /M &)
i#ik %t
ik — AL
X exp ikx >

(x —xo+fikt /M)?
2831 +-ifit /MS?)

, (2.88)

so that the crest of the wave packet is situated at the time
t=0 in a certain plane x =xy <0. As discussed previous-
ly, the quasiclassical flux-dependent phase shift of the
wave function in the plane x =x, is equal to the path in-
tegral of the vector potential, (g /%c) f Adr, evaluated

curlA=B,
divA=0,

FIG. 30. Scattering of a wave packet of kinetic momentum #k,
oriented in the — x direction, by a circular magnetic string of
radius py lying in the y,z plane. The magnetic flux F enclosed
by the circular string perturbs the probability distribution main-
ly in the vicinity of a rotation surface limited by the string and
extengling in the —x direction up to distances of the order of
b kp().

on the straight lines connecting the incidence region with
the plane x =x,. The vector potential of the circular
string can be determined by noting that the expression of
the vector potential A in terms of the magnetic field B,
together with the gauge relation divA =0, '

(2.89a)
(2.89b)

is analogous to the expression of the magnetic field B in terms of the current distribution j which generates the field,

and the divergence relation divB=0,
curlB= icz i

divB=0.

(2.90a)

(2.90b)

Then by analogy with Biot and Savart’s law, the vector potential of a closed string € carrying the flux Fis

F RXds
An=— - foTmr

(2.91)

where ds is a differential element on the loop Q, and R is the vector from ds to the point r. Consequently, the distribu-
tion of vector potential of a circular magnetic string of radius pg is similar to the distribution of magnetic field of a
current loop having the same radius. Then it can be shown that if —xy>>py, the phase shift of the wave function is
— gF /#ic = —2ma for those points in the x =x, plane whose distance p to the x axis is p <py, and is equal to zero for
p>po- Thus in the presence of the circular magnetic string the wave function in the plane x =x, has the form

(x —x0)?
282

1

‘Ppo)a(x,p,X,O)= W[1+Wa(p,0)]exp . (2.92)

—ikx —

where
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—2ima

e » P<Po
L, p>po-

(2.93a)

1+ Walp,0)= (2.93b)

The variables p,X appearing in Eq. (2.92) represent in this section the polar coordinates in the x =x, plane. As in the
case of the pair of parallel strings, the total wave function at the time ¢ > 0 in the observing region x < x, is the product
of a one-dimensional wave function Wg(x,t), which describes propagation in the — x direction, by a transverse wave
function ﬁa(p,X ,t) evolving from the initial state 1+ W,

W0 ol %P X, 1) =Ws(x, )R o (p,X 1) . (2.94)
The function Wg(x,?) is identical to that written in Eq. (2.88), while R « 18 given by

5 _ iM ® ., ’ 2 ' ’ iM 2 2 ’ _ v

R, (p,X,t)=— it fo p'dp fo dX'[1+ W ,(p',0)]exp Eyrn [p*+p'“—2pp’'cos(X —X )]} . (2.95)

Since the action of the free-particle Green’s function on a constant term reproduces that term, the part of the integral
corresponding to unity [appearing in the parenthesis on the right-hand side of Eq. (2.95)] is simply equal to 1. By substi-
tuting the expression of W, Eq. (2.93), and integrating with respect to X’ we obtain the wave function in the vicinity of

the negative part of the x axis as

' 2M . i Po ; g
Yy alX:p, X, 1) =We(x,1) l—ﬁ—tsm('rra)e tra fo e’M(pz"'pz)/Zﬁ'Jo

The integral in Eq. (2.96) describes the quantum diffusion
of the probability from a cylinder of radius p,. If the
center of the packet is in the vicinity of the magnetic
loop, — x. <<kp}, the integral can be evaluated with the
aid of the formula (Abramowitz and Stegun, 1965, p. 486)
fw eiazp’zJO(bpl)p:dpr:;e—t‘bz/‘laz . (2.97)
0 2 a2
Then the wave function on the surface of the cylinder
p=po, bounded at x=0 by the circular string, is given by

¥p,.a=Ys(x,t)e ~"™cos(ra) , p=py, —kph<<x <0 .

(2.98)

The scattering term in Eq. (2.96) has a significant influ-
ence on the probability distribution up to distances of the
order of x,~—kp$, beyond which the quantum diffusion
mixes contributions arising from various parts of the
loop. Thus the circular magnetic string produces an
Aharonov-Bohm effect in the vicinity of a rotation sur-
face spanning the string, and extending itself in the nega-
tive x direction up to distances of the order of — kpj.
Beyond that region the wave function, Eq. (2.96), becomes

2
¥, «=Ws(x,t) |1 —sin(ra)e *”’""ﬂfﬂ

2o , (2.99)

Since —xc=*ikt/M, the scattering term in Eq. (2.99)
represents the part of a spherical wave propagating in the
vicinity of the —x axis, with an amplitude proportional
to the area of the loop; this amplitude depends periodical-
ly on the amount of enclosed magnetic flux.
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Mpp"

7t . (2.96)

pldpl

E. Scattering of a plane wave
by a tube of magnetic flux

We have seen in Sec. II.LA that there is a certain ex-
change of kinetic momentum between an incident plane
wave and a magnetic string. In order to understand the
mechanism of this momentum transfer, we shall consider
in this section the scattering of a plane wave by a magnet-
ic flux F uniformly distributed inside a cylinder of radius
ro, as shown in Fig. 31. We shall see that while at low in-
tensities of the magnetic field F/mr} the action of the
tube of flux on the incident particles is different from that
of a magnetic string carrying the same flux, the scattering
by the distributed flux approaches the scattering by a
magnetic string when the radius ry becomes very small,
krg << 1.

Since an incident particle of momentum 7%k acquires a
normal momentum component of the order of 4#%a/r, as
it traverses the flux region, the angular deflection of the
particle is of the order of 4a/kry. The dimensionless pa-
rameter a proportional to the flux, defined in Eq. (2.3), is
not restricted in this section to the range 0—+, but may
assume any value. If Vr,=4a/kry << 1, we can obtain the

wave function in the quasiclassical approximation,
(i /%S,
¢r0, a=F¢ “.

The reduced action S, appearing in Eq. (2.100) is given
by

(2.100)

ds, (2.101)

Sa= J,

where Mv is the classical kinetic momentum on the sta-
tionary path I' connecting the incidence region to the

Mv—l—%A
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FIG. 31. Scattering by a magnetic flux F, uniformly distributed
inside a cylinder of radius r,. While at low intensities of the
magnetic field F/mr} the action of the tube of flux on the in-
cident particles is different from that of a magnetic string carry-
ing the same amount of flux, scattering by the distributed flux
converges toward scattering by a magnetic string when the ra-
dius 7o becomes very small, kry << 1.

point where the wave function is to be determined. Since
on the stationary path I" we have vds=uvds, and more-
over the magnitude of the classical velocity v is conserved
by the magnetic field, the contribution arising from the
first term in the integral, Eq. (2.101), depends on the
length of the path I'. Now the lengths of the paths I" and
'y connecting a given point in the observing region to the
points in the incidence region, in the presence and in the
absence, respectively, of the magnetic flux, differ for
small deflection angles v, <<1 by terms of the order of

7/30, so that as long as we are interested in first-order ef-

fects with respect to the magnetic flux we can perform
the integration in Eq. (2.101) along the unperturbed path
I'p. This point, which was emphasized by Greenberger
and Overhauser (1979), will be further discussed in Sec.
HLG. Thus the wave function ¢, , has the form

brya=doe'*, 2.102)
where o=exp(—ikx) is the unperturbed incident wave,
and

<I>a=—hq; froAds . (2.103)
The unperturbed path I'y appearing in Eq. (2.103) is a
straight line parallel to the x axis, as shown in Fig. 32. In
order to determine @, we note that in a gauge where the
lines of the vector potential are circles around the center
of the region of flux, the path 'y connecting the point P
in the incidence region to the point Q in the observing re-
gion can be completed without affecting the value of &,
by a line QO to the center O of the flux distribution, and
further by a line OP’ along the x axis, back to the in-
cidence region. With these paths, the phase of the wave
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FIG. 32. Scattering by a magnetic flux F =2fica/q, uniform-
ly distributed inside a cylinder of radius ro, in the quasiclassical
limit 4a/kro<<1. The quasiclassical wave function is
@,0,a=exp( —ikx +i®,), where the phase ®, is proportional to
the amount of flux enclosed by the loop PQOP'P. If the line
PQ does not intersect the region of flux, then ®,=a6. On the
other hand, if we displace the point Q from negative to positive
values of the coordinates y in the observing plane, the phase
varies continuously between —ma and 7a, having a zero on the
half-plane | 0| =.

function at the point Q is proportional to the amount of
magnetic flux enclosed by the path PQOP'P, and if the
line PQ does not intersect the region of the flux, then

®,=ab, —m<O<mT. (2.104)

The quasiclassical wave function representing the scatter-
ing by the tube of magnetic flux is thus

Yppa=e O _po<m, (2.105)
and except in the vicinity of the negative part of the x
axis it approaches the wave function for the scattering by
a string of flux, Egs. (2.13) and (2.6). Now if we displace
the point Q from a negative to a positive value of the
coordinate y in the observing plane, the path PQ will in-
tersect the region of magnetic flux beyond a certain posi-
tion of Q, so that the phase ®, varies continuously be-
tween —wa and wa, having a zero on the half-plane
| 6| =1, as shown in the lower part of Fig. 32. In order
to appreciate the differences between scattering by a dis-
tribution of flux and scattering by a string of flux, let us
consider the circulation of the kinematical field Mv de-
fined in Eq. (1.112). As discussed in Sec. IL.A, the circu-
lation of the Mv around a magnetic string is a periodic
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function of the amount of enclosed flux, given by —27#
multiplied by the difference between a and the nearest in-
teger, the circulation being zero for half-integer values of
a. This is due to the fact that, according to Eq. (2.6), the
phase of the wave function representing scattering by a
string is in general discontinuous at | 8 | = by an integer
multiple of 27, although the wave function itself is con-
tinuous. In the case of a tube of flux and in the weak-
field limit 4a/kry <<1, it is not only the wave function,
but also the phase which varies continuously across the
half-plane | 0| =m, and therefore the corresponding cir-
culation of Mv is simply proportional to —2#7#a. Thus
in the weak-field limit the action of the distribution mag-
netic flux is different from that of a string carrying the
same flux, the differences being, however, restricted main-
ly to the region near the negative part of the x axis.

If the radius of the tube of flux is so small that diffrac-
tion effects are dominant, then we must solve the corre-
sponding Schrodinger equation. The vector potential of
the cylindrical distribution of magnetic flux is given in
polar coordinates r,0 in the plane z=0 by

A,° =0, (2.106a)
, r<r (2.106b)
(rg) 277r% 0
Ag )
F » F>ro (2.106¢)
2

and the Schrédinger equation for a particle of incident en-
ergy #°k%/2M is

2
@y 100 [ [0 q ef],_
a2 T ar TR a0 "7 e | V70
(2.107)

The eigenfunctions of Eq. (2.107) have the form

P (r,0)=X;(r)e™8, m =0,%1,..., (2.108)
where X&' is an eigenfunction of the equations
X 1 dx,y K2 |m _oar ’ XY@ —o
dr? r dr roo " ’
r<ro, (2.109a)
d2X§,‘f) +l dX;:) + K2 (m —a)2 X(a):O
dar> r dr r2 m ’
r>ro. (2.109b)

It can be shown by solving Egs. (2.109) that the eigen-

functions ¢(,z,)m have the form

[ {m—a) k) A H g (kP)]e™®, F > 7g
o (2.110a)
ro,m )
B, X2 (kr)e™®, r <r, (2.110b)
where
XD kr)= (k) Im 1 =7 7278
2.2
|m|+1—m kg ar?
F - 1%
x 2 da |ImIHTS
2.111)

The function % in Eq. (2.111) is the confluent hyper-
geometric function, as defined by Morse and Feshbach
(1953). The coefficients A4,, and B,, can be determined
from the continuity conditions at r=ry of w‘,‘;,)m and

3Py /0,

J

I |m—a| (kro) X (kro) —J |y _q| (krg X2 (kro)

A, =— : : , (2.112a)
T H o ke X (kro)—H Y, (krg) X (ko)
B — J\m—al (krO)H<|1,;; —a| krg) =T\ ) (kro)H(ll'; —a| (krg) (2.112b)
" Xy ero)H g _ | (ko) — X Uerg)H 'y _ | (Kr) '
|
where the prime denotes the derivative. By comparing HY ()= i —imvy _ 2115
Egs. (2.110) and (2.112) with the solution for scattering by v (6) sin(mv) (e v =) (2.115)
a string of flux, Egs. (2.4) and (2.5), we infer that the Je £ 1
wave function for scattering by a tube of flux is while for |z | <
v
N (o (2.116)
A6 2'T(v+1)

Vrpa= > e “mAIm=elyld (r,0). (2.113)

m=-—o0

Eqgs. (2.112) imply that for kry<<1 the coefficients 4,,
and B,, are of the order of

Ay =0((kry)?Im—aly
B, =O0((krge!™—al=Imly

From Egs. (2.110)—(2.112), the wave function ¢, , has
the property that

lllro,—a(r?e):lpro,a(r’ ""6) >

and therefore we can restrict our analysis to positive
values of a. Since

(2.117a)
(2.114) (2.117b)

Now if the radius of the tube is diminished, kry—O0,
while the amount of flux is kept constant, the coefficients
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A,, become, according to Eq. (2.116a), vanishingly small,
so that the wave function Eq. (2.113) converges in the
field-free region toward the wave function Eq. (2.5) for
scattering by a string carrying the same flux (Kretzsch-
mar, 1965b). In particular, for sufficiently small values
of krg, the patterns of the probability current in the
field-free region have bifurcation points for values of a
that are not half-integers. For half-integer values of a,
the current patterns are symmetric with respect to the in-
cidence direction. Moreover, the circulation of the veloci-
ty field, Eq. (2.118), is equal to —2## multiplied by the
difference between a and the nearest integer. Thus, un-
like the nonperiodic, weak-field solution of Egs. (2.102)
and (2.103), the wave function ¢, o, Eq. (2.113), is period-

ic with respect to a in the field-free region, owing to the
fact that a number of magnetic flux quanta, or fluxoids,
equal to the nearest integer to a are trapped within the re-
gion of magnetic field. In general, one fluxoid is trapped
when the circulation integral gﬁ (Mv+qA/c)s is equal
to 2m# (London, 1961). The periodicity of ¢, , in the

field-free region is due to the fact that, while at extremely
small values of r, r <<kr2, the wave function Eq. (2.113)
is dominated by the term m =0, the dominant term of
Yrya ON the boundary r =r( of the flux region arises ac-

cording to Egs. (2.110b), (2.111), and (2.117b) from that
value of m which coincides with the nearest integer to a,
designated by N,. It can be shown by applying an in-
tegral criterion (Whittaker and Watson, 1958) that the
number of roots of the equation ¥, ,=O0, contained
within the contour » =ry, is equal to N,, each root ac-
counting for one fluxoid. If the difference between a and
its integer part [a] is less than +, there are [a] roots si-
tuated at a distance of the order of r~kr} from the
center. If a—[a]> 7, there are [a] roots at a distance of
the order of r~kr3, and one more root at
kr ~(krg)*e—la) 0= _7/2 —m(a—[a]).

A persistent problem associated with the quantum ef-
fects of the fluxes was the origin of the kinetic momen-
tum transported by the radial wave during scattering by a
magnetic string. Peshkin, Talmi, and Tassie (1961), and
subsequently Aharonov and Bohm (1961), pointed out
that the conservation of kinetic momentum requires that

the exchange of momentum occur in the region of the
|

magnetic string. The question of why the incident beam
spreads, when the force is zero almost everywhere in the
space, was more recently raised by Henneberger
(1980,1981) and by Henneberger and Huguenin (1981),
without, however, offering a satisfactory explanation.
Since in the case of a string the exchange of kinetic
momentum is the result of a divergent force acting over a
vanishingly small area, analysis of the scattering by a
string of flux does not provide an appropriate frame for
answering the question. We shall consider further the
problem of conservation of kinetic momentum during
scattering by a magnetic flux uniformly distributed within
a cylinder of radius ry. As discussed above, the scattering
in the field-free region in the limit kr,—0 approaches the
scattering by a string carrying the same amount of flux.
We shall show that the momentum in the scattering wave
is due to the magnetic force acting in the region of the
flux.

The operator of the magnetic force has the components

?‘x=2ﬁ2(f _l._a,_gzi , (2.118a)
Mr§ Yy ry

~ 2

Fyzzh‘; .1_% , (2.118b)
Mro dx o

for r <ry, and is equal to zero in the region r >r,. For
the present purpose the wave function, Eq. (2.113), can be
approximated by retaining only the terms m =[a] and
m=[a]+1,

¢r0,aze —(i1r/2)(a—[a])B[a]XE¢;)](kr)ei[a]e

+e -—(i1r/2)(1+[a]—a)B[a]+1XEg)]+l(kr)

X ellal+1o (2.119)
the influence of the other terms being noticeable only over
an area of the order of k¢ The rate of transfer of ki-
netic momentum to the charged particle is, according to
Eq. (1.89),

To m A
Re [ “rdr f_ﬂdelp’:o,aw,o,a.

We first perform the integration over the angle 6, with
the result

(2.120)

™ ~ 2r#itka .
Re f‘_ Uy oFx¥r ad0="——"5—B[a1B[q)+1sinT(a—[a])
w 0 0 Mro
dX(a) dX(ll) 2 i
(@) HXlal+l  (a) la] [al+1 _ 2akr | ()@
XX g (k) X+ 1 G (k) kr (ke [lelal+t| 2121
™ -~ 2tk
Re f_”lP:O,aFylp,o,adG:‘TB[‘Z]B[“]_,_ICOS?T((Z—-[G])
0
aX{@+1 ax{s) . (2[a]+1  2akr
X X oy M1 ) lal+1 XtaX a1 (2.121b)

kr (kro)?

The integration over r of the expression in Eqgs. (2.121) can be performed with the aid of the transformation
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dX(a) dx(a) 2 1 2 k
(@) GATal+1 L a) la] [a]+ akr
kr lx["] dkr Ve kr (kro)
_ (kro)* 9 X dxia) | akr yio _ Lalyia
2 Akr) d(kr) " (krg)? 17 g 7l

dxX{%. | [a]+1
d (kr) kr

X([g§+1“ (kr

valid for r <r,. Equation (2.122) can be obtained by in-
tegrating Eq. (1.89) over O, for a fixed kr. Then from
Egs. (2.111) and (2.112) in the limit kro—0 we have

a—[a]—1
zza_([l;rg)lr(a_[a]) ,  (2.123a)
Big 41 d:(itﬁjl 1+£5(])_a}\’[a)]+1 rery
Uerg) 7 (2.123b)

T Jlaler([g]+1—a)

Finally we obtain in the limit kry—0 the expressions

o " A Wk .,
Re fo rdr f_ﬂd@tp’,*o,an%O,a: a Sin m(a—[a])
(2.124a)

'0 T A
Re fo rar [ A0y} oFyUr

2

= 2Zk sinm(a—[a])cosm(a—[a]) (2.124b)

which coincide with Egs. (2.34) if we take into account
the fact that in those equations @ was assumed to belong
to the interval 0—+. Thus in complete analogy with clas-
sical mechanics, momentum scattering by a thin line of
flux is due to the magnetic force acting on the incident
particle. As will be discussed in the next section, the
transfer of kinetic momentum to the charged particles is,
however, a circumstantial property of the quantum effects
of the fluxes.

Let us now consider briefly the commutation relations
among components of the kinetic angular momentum
operator,

A=rx

—iﬁv—lA] ,
C

in the case of a cylindrical distribution of magnetic flux.
It can be shown by direct calculation that the components
of A satisfy the relations

A A A A LA iqgh
AyAz—AszzzﬁAx+—lqc—x (xBx+yB, +zB;) ,

(2.125a)
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)2X[a]+1

( )
a}X[a1+1}

+hrX (S0 | (2.122)

A

A A=A A, =ifiA, 44 y(xBx+yB +2zB,) ,

(2.125b)

A A, —RA, A, =iiA, +—z(xB +yB,+zB,) ,
(2.125¢)
where B=V X A. We see that, in the field-free region,
the relations between various components of the kinetic
angular momentum are identical to the relations between
components of the canonical momentum L=rXx(—i#V),
while in the region of flux additional terms appear;
these terms account for the fact that the spectra of A?

and A are different from the spectra of 1 2and L

F. Shielding effects

In order to appreciate the implications of the quantum
effects of the fluxes, let us assume that the distribution of
electromagnetic flux is shielded by reflecting barriers,
which prevent the incident charged particles from in-
teracting directly with the field strengths. We shall con-
sider in this section an infinite magnetic strlng, surround-
ed by a perfectly reflecting cylinder of radius R, having
the axis coincident with the string, and shall see that for
vanishing R, the scattering by this structure converges to
the scattering by the bare string, discussed in Sec. ILA.
The significance of this result is that the phase shift by
a6 in the asymptotic wave function, Eq. (2.13), is not the
result of a direct action of the field strengths on the in-
cident particles. Now in the case of scattering by a mag-
netic string surrounded by a perfectly reflecting cylinder,
the space accessible to the incident particles is formally
multiconnected, so that the eventual use of multivalued
wave functions cannot be excluded a priori. In order to
settle this question, we shall analyze the scattering by a
tube of magnetic flux surrounded by a finite-height poten-
tial barrier, a situation free of ambiguities, and shall see
that the idealized case is indeed obtained as the limit
when the length of the potential barrier becomes very
large.

The wave function for the scattering of a plane wave by
an infinite magnetic string surrounded by a perfectly re-
flecting cylinder, as shown in Fig. 33, can be obtained by
adding to the series in Eq. (2.5) suitable terms proportion-
al to Hankel functions (Morse and Feshbach, 1953, p.
1376),



'I’Eo,a(’»e): 2 e—(ifr/2)|m—a[ Jlm—a|(kr)_

m = —

where the coefficients multiplying the Hankel functions
have been chosen such that ¢§0 < R0,0)=0. Let us as-

sume first that the radius of the cylinder is very small,
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Jim—a)(kRp) . -
el gl o (kn) [, r >R, (2.126)
HYy _q) (kRo)
T
~ (1) ~ ~ 2im—a
Jim—a|(KRo)/H |\ _q|(kRg) &
Jim—a)kr)/H), o (kr)  — | 7 ’
(2.128)

kR, << 1. Since for kR, << 1 we have

J|m_a|(k§o) N imT
H(|lrll——al(k§0) T I(|m—a|)T(|m—a|+1)

2lm—al

kR,
2

) (2.127)

while J |, _| (kr) and H'), _, | (kr) are of the same order
of magnitude in the asymptotic region kr >>1, the contri-
bution to the total wave function of the wave scattered at
the wall of the shielding cylinder becomes vanishingly
small as the radius R, goes to zero. Thus the wave func-
tion ¢§0’a converges in this case with the wave function

Yo Eq. (2.5), representing scattering by a bare string
(Aharonov et al., 1984a). Since the shielded magnetic
string is inaccessible to the incident particles, we conclude
that the existence of quantum effects of the fluxes is in-
dependent of a direct action of the field strengths on the
charged particles. In order to find out the effect of the
shielding in the vicinity of the string, where kr << 1, we
note that the ratio of the terms in the large parentheses
appearing in Eq. (2.126) is given by

U
b

«w

F

z

FIG. 33. Scattering of a plane wave by an infinite magnetic

string, shielded by a reflecting cylinder of radius R,. For thin
cylinders kR, << 1, scattering by the shielded string converges
with scattering by the bare string. For large kR, the effect of
the enclosed flux is mainly to shift by gF6/#c the phase of the
wave function representing scattering by the shielding cylinder
in the absence of flux.
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so that for fixed r and Ry—0 the contribution of the
shielding cylinder to the scattered wave can be neglected
in this case, too. The convergence to zero of the ratio in
Eq. (2.128) is not, however, uniform with respect to a.
Thus, when an infinite magnetic string is shielded by bar-
riers of very small transverse dimensions, the effects attri-
butable to the shielding are negligible, except in cases
when the amount of enclosed flux is close to an integer
multiple of 27%ic /q. In these cases the shielding perturbs
the probability distribution up to distances of the order of
one wavelength from the magnetic string.

As can be seen from Eq. (2.13), the magnetic string
shifts the phase of an incident plane wave by an amount
proportional to the enclosed magnetic flux, and gives rise
to a scattered wave whose amplitude is a periodic func-
tion of the flux. We have remarked in the preceding sec-
tion that the change in kinetic momentum of the incident
particles is not an effect specific to the enclosed fluxes;
rather it follows the quantum diffraction of the phase-
shifted components of the incident wave. If the radius
R, of the shielding cylinder is large, kRy>>1, the dif-
fraction effects are not dominant, as they were in the case
of scattering by the bare string, and we therefore expect
that in a first approximation the wave function ¢§0’a

should be obtained from the flux-free wave function ¢z
0’
through multiplication by the phase factor exp(ia6). In

order to show this, we shall use the asymptotic
expressions of the functions J, and H\"=J,+iY,.

When v<k§0 is large and positive and O
<arccos(v/kRy) < /2,
172 )
T ?] R
% cos | (k2R 3—+*)1"2 _yarccos—— — = | ,
R, 4
(2.129a)
) 172 )
o= ?] (R
xsin | (k2R 3—+v*)!2 —varccos 1: —% ,
Ry
(2.129b)

and when v> kR, is large,
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2 172
(V—k*R 32 —yIn Y
kR 3

exp [
J (kR )~

*Ro (2.130a)
= , .130a
(27T)1/2(’V2—k2R (2))1/4
172
1,2 €Xp {vIn Y Viz —1 —(V*—k2R })'?
—~ 2 kR() sz 0
Y (kRy)~— | = (2.130b)

(,VZ_kZR’ (2))1/4

(Abramowitz and Stegun, 1965, pp. 365—366). With these functions we can approximate the ratio J,,(kRy)/H " (kR )

appearing in Eq. (2.126) as

Jv(kﬁo) % {1+exp —2i (kzﬁ(z,—vz)l/z—varécos I‘% —% ), v<k§0 (2.131a)
— o~ 0
H'P(kR,) -
0, v>kR, . (2.131b)
[
Moreover, if we assume that 7 >>§0, then we can replace q><"¢f>= —7|m—al —2[k2R(2)—(m _a)2]1/2

the Hankel function H (\l,l, _a| (kr) by its asymptotic form
for large arguments, Eq. (2.11). Then it can be shown
that the principal contribution to the scattering wave
arises from the exponential part of the coefficients in Eqgs.
(2.131) and is equal to
ikr+im/4 kR ol
S AGR ~ (2.132)

T~ —
Ry, (217kr)1/2 R
=T 0

where the phase @& is given by

Fo (O)=explia0—0)] [~ dvexp |—im|v| —2i(k?R2—v})'242i |v arccos—l‘ﬁiwv(o—;) ,
Ro —w kR

where § is an integer multiple of 277. The principal con-
tribution to the integral, Eq. (2.134), arises from the re-
gion in v space where the phase is stationary. It can be
shown that such stationary points of the phase exist only
for the wvalue £=0, when they are situated at
vo=kRysin(0/2). In the vicinity of this point the in-
tegrand in Eq. (2.134) is approximately equal to

—2kRycos(0/2)— L 2.

———(v—y,
kRycos(6/2)
After integrating Eq. (2.134) and using Eq. (1.72), we ob-

tain for the scattered wave, Eq. (2.132),

1/2
1

(kr)17?

kR,
Tﬁo,a: 2

cos(6/2)

X explikr —2ikﬁocos(0/2)+ia9—i#/4] .

(2.135)

Now as discussed in Sec. II.A, for k7 >>1 we have
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+2|m—a] arccos—!-—m—:ﬂ—f-me . (2.133)
Ry

The sum 2exp(id>£,‘,")) can be evaluated in the limit
kR,>>1 with the aid of the Poisson sum formula, Egs.

(1.71) and (1.72), by considering the Fourier transform of
the general term of the series,

(2.134)
0

e —(ir/2)|m —a [Jlm —a| (kr)ei’"oge —ikr cosO+iad

2

m o
so tha~t wave function, Eq. (2.126), becomes for
kr >kRy>>1

¢§0’aze‘“"¢§o’0 (2.136)
where

R 172
__, —ikrcosf Y _ 1

lpko,o_e ikr cos6__ cos(6/2) (k)1 72

X exp[ikr —2ikR ycos(0/2)—im/4] .

(2.137)

The wave function ¢z  represents the scattering by a
0

cylinder of radius R, in the absence of magnetic flux, and
the scattered wave corresponds to classical elastic reflec-
tions of the particle from each portion of the half-
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cylinder exposed to the incident wave (Morse and Fesh-
bach, 1953, p. 1381). Neglected in Eqgs. (2.136) and
(2.137) are all the diffraction terms, whose amplitude is
small when compared with (kR)'/2. Thus in the quasi-
classical approximation the magnetic flux enclosed within
a cylinder of radius R, shifts the phase of the flux-free
wave function, while leaving the distribution of kinetic
momentum essentially unchanged.

A similar approach can be used to determine the wave
function in the vicinity of the reflecting cylinder. For
k(r —R,) << 1 the expression of ¢'§0,a’ Eq. (2.126), can be

approximated by

2i(r ——ﬁo) & 1
Y o= 3 —— L
o 7TRO m=—o0 Hlm_al(kRo)

Xeimﬂ—-(i'n-/Z)lm—al
(2.138)

where we have used the fact that the Wronskian of the in-
dependent solutions J, and H'" is
T (DHY @) —T,(0H M ()= %fz— . (2.139)

Then substituting in Eq. (2.138) the asymptotic form of
the Hankel function

1/2
1 T (k2R 3—v*)%exp | —i (kR 3—+*)'>+ivarccos Y _tim/4|, 0<v<kR, (2.140a)
— T~ R
HD(KR,) B 0
0, v>kR, (2.140b)
where 0 < arccos(v/kR 0) < /2, we obtain the wave function ¢vE o
0’
12 ~ kR
2 r—R 0 ~ iola)
Vg, 0™ ‘— —=L 3 [KRi-(m -], (2.141)
m RO mz—kﬁo
where the phase ©'% is given by
0¥ =_[k’R}—(m —a)1"’+i |m —a| arccos—]ul——% |m —a| +m6 . (2.142)

As previously, the sum in Eq. (2.141) can be evaluated in the limit kR, >>1 with the aid of the Poisson formula, by con-
sidering the Fourier transform of the general term of the series,

%R.O(g):efa“’—@fw (k2R §—+*)4exp _iz’f—|v;_i(k2§g—v2)‘/2+i |v|arccos-}c—1:—,J—+iv(9—§) dv,
o ; 7

where § is an integer multiple of 277. The phase of the in-
tegrand in Eq. (2.144) has a stationary point only for {=0
and —7/2 <0 < /2, situated at '170=kﬁosin9. In the vi-
cinity of this point the integrand in Eq. (2.144) is approxi-
mately equal to

(kRocos0)!"%exp | —ikR gcosd— ——-;l————

(v—%)z .
2kR ycosO

After integrating Eq. (2.143) with respect to v and using
Eq. (1.72), we obtain the wave function ¢ Ry’

—ikR jcos6+iad

’

2e ik (r —R)cosfe

—m/2<0<m/2
0, —m<O0<—7/2, w/2<0<

L (2.144a)

(2.144v)

where k(r —R,)<<1. It is apparent that, for —w/2
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(2.143)
0

[

<0 <1m/2, the wave function is the superposition of the
incident wave and of a wave reflected from each portion
of the half-cylinder exposed to the incident wave, while
the wave function is vanishing in the shadow of the
cylinder, —m <0< —7/2 and m/2 <0 < 7.

The electromagnetic potentials @, A included in the
Schrodinger equation' are replaced in the hydrodynamical
formulation of quantum mechanics by the field strengths
E,B. As discussed in Sec. L.LH, the Aharonov-Bohm ef-
fect appears in the hydrodynamical representation as a re-
sult of the penetration of the wave function into the re-
gion of the field strengths. However, if the region of the
field strengths is shielded by perfectly reflecting barriers,
the wave function is exactly zero in the shielded region.
In this case the effects of the enclosed fluxes are incor-
porated into the theoretical description via boundary con-
ditions, which must be fulfilled by the wave function at
the frontier of the accessible region (Byers and Yang,
1961; Schulman, 1971; Strocchi and Wightman, 1974;
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Inomata and Singh, 1978; Bohm and Hiley, 1979; Rothe,
1981). As pointed out by Merzbacher (1962), the correct
boundary conditions and the corresponding wave func-
tions can be obtained by a limiting process from more
realistic models, which consider the physical space as
singly connected. As an example of such a limiting pro-
cess let us suppose that a magnetic flux F =2wfica/q uni-
formly distributed in a cylinder of radius 7 is placed in-
side a cylindrical potential barrier of finite height U, hav-
ing the same radius ry (Kretzschmar, 1965b). The Ham-
iltonian of a particle of charge g and mass M is then
given by

w  #|® 18 13 ig L
Hoa="m §+7$+Tz[£—;§”*e ]
+U(r), (2.145)
where
K

k

(ry)
o) __Fr (nN=U, r <ry

i

(2.146a)

, Un=0,r>rp. (2.146b)

2mr

If the energy of the particle is #%k2/2M, the eigenfunc-
tions of the Hamiltonian (2.145) are

[ \m—a) k) + A, H), o (kr)]e™P
(2.147a)
(2.147b)

J(rg,)m(r’e):

BmX(,,‘,")(Kr)e""e, F<Fg

r>ry

where X'@ is the function defined in Eq. (2.111), and
2MU
ﬁ2
The coefficients 4,, and B, can be determined from the
continuity conditions at r =r, of ¢ (,‘0’,),,, and 3¢ (,‘;,)m /0r as

Kr=k*—

I im—a| krXS (k1) =T |y _ | (kP X2 (Krg)

Ap=—

k

5 I im—a| kro)H o (kro) =Ty _ | (kro)H ), _ g (krg)

, . (2.148a)

ZH W, o) ko X\ (rg) —H ) _ o (hrg X @ irg)

(2.148b)

m
K

X krg) H ' _ g (kro)— .

Now if we let the height of the potential barrier become
very large for fixed r(, the asymptotic behavior of the
functions X'®(kro), Eq. (2.111), results in the coefficients

J|m—a|(kr0)

lim 4, = ——p—————, (2.149a)
Ooow  H{m_q)(krg)

lim B,, =0, (2.149b)
U—o

which yield, when substituted in Eq. (2.147), just the ex-
pression of the eigenfunctions we have used in Eq. (2.126)
to describe scattering by a perfectly reflecting cylinder.
We conclude from the analysis developed in this section
that enclosed electromagnetic fluxes shift the phase of the
wave function representing the incident charged particles,
and moreover that flux-dependent phase shifts persist
even when the overlap between the region accessible to the
particles and the region of the field strengths is rendered
arbitrarily small. The flux-dependent phase shifts pro-
duce in general observable changes in the patterns of the
probability density and current, and as a secondary effect
may result in a transfer of kinetic momentum to the in-
cident particle, mediated by the forces associated with the
scattering object. The existence of the quantum effects of
the fluxes cannot be explained merely by taking into con-
sideration the distribution of field strengths in the vicinity
of the quasiclassical path of the incident particle, but
rather requires a knowledge of the electromagnetic flux
enclosed between pairs of such quasiclassical paths.

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

X (krg) H ' _q| (kro)

lll. EXPERIMENTAL EVIDENCE

A. Observation of the quantum interference
of electrons with an electrostatic biprism

As discussed in Sec. I, the position of the envelope of a
quantum interference pattern is controlled by the field
strengths acting on the incident particles, while the posi-
tion of the fringes relative to the envelope of the pattern is
determined by the amount of flux enclosed between the
arms of the interference experiment. There are several
types of experiments demonstrating the action of the en-
closed electromagnetic fluxes, which can be distinguished
according to the flux-carrying object and the method used
for obtaining the interference pattern. The first experi-
ments demonstrating the Aharonov-Bohm effect were
based on the observation of flux-dependent shifts of the
fringes produced with the electrostatic biprism of
Mollenstedt and Diker (1956), which represents the
quantum-mechanical analog of the Fresnel optical
biprism. In a different arrangement, the electron interfer-
ence pattern can be obtained with the aid of supercon-
ducting quantum interference devices, which were first
applied to the investigation of quantum effects of the
fluxes by Jaklevic et al. (1964a,1964b,1965). A third
direction for experimental study is the quantization of the
magnetic flux trapped in superconducting cylinders, ini-
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tiated by Deaver and Fairbank (1961) and Doll and
Nabauer (1961).

The first positive observation of quantum effects of the
fluxes was reported by Chambers (1960), who used as a
flux-carrying object a thin magnetized whisker. The re-
sults of Chambers were confirmed by Fowler, Marton,
Simpson, and Suddeth (1961). Improved observations
were then reported by Boersch, Hamisch, Grohmann, and
Wohlleben (1961,1962), who used in their experiments fil-
aments of ferromagnetic materials. The progressive shift
of the fringes relative to the envelope of the pattern was
demonstrated by Mollenstedt and Bayh (1962) and Bayh
(1962), who produced magnetic flux with the aid of mi-
croscopic solenoids. All these experiments were based on
the electrostatic biprism, and all placed the magnetic flux
in the shadow of the biprism fiber. A clear separation be-
tween the region accessible to the electrons and the region
of the field strengths was achieved in the experiments of
Jaklevic et al. (1964b,1965) with superconducting quan-
tum interference devices. They observed the modulation
of the maximum supercurrent by the magnetic flux en-
closed in a microscopic solenoid. Among the more recent
experimental results concerning quantum effects of the
fluxes are those of Wahl (1968,1970), and Lischke
(1969,1970a,1970b), who studied quantization of the mag-
netic flux in superconducting tubes by use of electron in-
terferometry modulated by the Aharonov-Bohm effect,
and those of Henry and Deaver (1968,1970), who studied
quantization for cylinders with a superconducting path
passing several times around a single hole. A recent
prominent study was that of Tonomura et al. (1982), who
observed the effects on electron interference patterns of
the magnetic flux enclosed in a microscopic toroidal mag-
net. All these experiments were performed with electrons.
The same principles, however, were shown to apply for
neutrons in the presence of a gravitational field by Colel-
la, Overhauser, and Werner (1975). -

In this section we shall analyze the electron interference
patterns produced with the aid of the electrostatic biprism
of Mollenstedt and Diker (1956). The electrostatic
biprism consists of a thin metallized fiber held at a posi-
tive potential with respect to a pair of symmetric conduc-
tors grounded to the earth, as shown in Fig. 34. The elec-
tric field between the fiber and these conductors bends the
paths of the electrons emerging from the source .%, there-
by creating two virtual sources *; and .%,. The effects
of various distributions of electromagnetic fields can be
analyzed by considering the phase difference in the ob-
serving plane between waves emerging from the virtual
sources .*; and .#,, and these predictions can then be
compared with the experimentally observed patterns.

In their experiments, Mollenstedt and Diiker used a
golden quartz fiber having a diameter of 2.5 um and a
length of 6 mm, while the grounded conductors shown in
Fig. 34 were set at a distance of 2 mm from the fiber.
They measured the distribution of potential of a model of
the biprism enlarged 100 times, and found that in the
working region of the biprism, which in real dimensions
was about 15 um from the fiber, the electric field E; was
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FIG. 34. Electrostatic biprism of Modllenstedt and Diiker
(1956). The metallized fiber a is kept at a positive potential
with respect to the two grounded conductors b, thereby creating
two virtual images ¥, and .%, of the electron filament .. The
interference pattern is obtained as the superposition of the elec-
tron waves arriving in the observing plane from the directions
of the virtual sources % and .%°,. The bars represent the dis-
tance a, between the virtual sources .%°; and .%,, and the dis-
tances by and ¢y from the electron source % to the center of
the fiber and to the observing plane, respectively.

radial and inversely proportional to the distance 7 to the
axis of the fiber,
AUy
Ef=—=—, (3.1)
7 .

where Uy is the potential of the fiber and A4 is a dimen-
sionless constant equal to 4=0.14. Since the potential of
the metallized fiber is typically a few volts, while the ki-
netic energy of the incident electrons is several tens of
keV, the paths of the electrons are deflected by a small
angle y, given by the ratio of the electron’s incident
momentum to the transverse momentum imparted by the
electric field of the fiber. Thus it can be shown that the
deflection angle for a particle of charge g and mass M is

r=f§4%g—f—<v1 —v2/e) 2 (3.2)
the angular deviation is independent of the distance from
the axis of the fiber to the path of the particle. This can
be readily understood, since the 1/7 dependence of the
electric field of the fiber, Eq. (3.1), is compensated by the
fact that the time spent by the particle in the vicinity of
the fiber is proportional to r. This means that the paths
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of the electrons, lying on one side of the fiber, are simply
rotated by an angle y, as shown in Fig. 35, so that the
electron waves arrive in the observing plane along rays
apparently emerging from the virtual image .#; of the
source .. On the other side of the fiber, the paths are
rotated by the same angle ¥ but in the opposite sense, so
that these components arrive in the observing plane ap-
parently from the symmetric virtual source .%,.
Mollenstedt and Diiker checked experimentally both the
path independence of the deflection angle ¥ and the pro-
portionality of y with the potential Uy of the fiber, and
found good agreement with Eq. (3.2). In order to give
some idea of the magnitude of the quantities involved in
this problem, we note that for an incident electron energy
of Mv?/2=20 keV and a fiber potential U;=10 V, the
deflection angle v is of the order of 10~ rad.

From the position of the virtual sources we can deter-
mine the interference pattern. For small y, the distance
between the virtual sources *°; and ., and the real
source . is equal to yb,, where, as shown in Fig. 34, b,
is the distance from the source % to the axis of the fiber.
The distance between the two virtual images is thus
ao=2yby, whence we can determine the spacing between
consecutive fringes as Acy/ag, where ¢ is the distance

FIG. 35. Optics of the electrostatic biprism. The deflection
angle ¥, which is proportional to the potential of the fiber a, is
independent of the distance from the axis of the fiber to the
path of the electron. Consequently, the electron waves ap-
parently arrive in the observing plane along straight lines
emerging from the virtual images of the real source .%.
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from the source to the observing plane, and A the electron
wavelength. The lengths b and ¢ in the experiment of
Mollenstedt and Diiker were b0=3.95 cm, cp=29.35 cm,
so that for a deflection angle of 10~ rad and an accelera-
tion voltage of 20 kV the interfringe was of the order of
3000 A. Since the contributions arising from various
parts of the source were incoherent, it was necessary, in
order to observe an interference pattern, that the width of
the source not exceed about 1000 A. Such a narrow
source was obtained by Mollenstedt and Diiker (1956) by
electron-optical demagnification with the aid of electro-
static cylindrical lenses. The diameter of the real electron
source was about 50 um, and after demagnification by a
factor of 1000 they obtained a filament having a width of
500 A and a length of a few millimeters, which was then
used as the source . for the biprism. The image formed
in the observing plane was then magnified with the aid of
two electrostatic lenses, as shown in Fig. 36.

The use of time-dependent solutions of the Schrodinger

ELECTRON SOURCE

0.3mm SLIT
DEMAGNIFYING LENS I

0.08 mm SLIT

DEMAGNIFYING LENS T
ELECTRON FILAMENT »

BIPRISM

Co

+ OBSERVING PLANE
MAGNIFYING LENS I

MAGNIFYING LENS I

LUMINESCENT SCREEN

FIG. 36. Experimental arrangement used by Mollenstedt and
Diiker (1956) to observe the quantum interference of electrons.
The diameter of the electron source was about 50 pm, and after
successive demagnifications by a total factor of 1000 a filament
was obtained having a width of 500 A and a length of a few
millimeters, which was used as the source .# for the biprism.
The image obtained in the observing plane was then magnified
with the aid of two electrostatic cylinder lenses.
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equation in the analysis of the two-slit interference pat-
tern developed in Sec. I was motivated by the transitory
nature of the quantum effects of enclosed electric fluxes.
Most experimental work on quantum effects of the fluxes
refers, however, to the stationary magnetic case, for
which we can also determine the probability distribution
in the observing plane with the aid of Kirchhoff’s formu-
lation of the diffraction theory. In this approach it is as-
sumed that the wave function on a surface =, lying in the
vicinity of the object onto which the diffraction takes
place, can be computed quasiclassically, while the further
- evolution of the state of the particle is given by a free-
particle propagator. Since the wave function in the ob-
serving plane is the superposition of waves arriving from
the directions of the two virtual sources, we shall first
consider the contribution due to the source .¥,. With the

symbols used in Fig. 37, the wave function at point Q in

the observing region is thus

xer P

Wi=15 [“ag [* an’

cos(n,Top )Y (P) ,

(3.3)
where n is normal to the plane 2, and
ikryzp
f  £50 (3.42)
lp(z())(P)= rop ’ > .
0, £<0. (3.4b)

If the distance d from the observing point Q to the
geometric shadow of the fiber shown in Fig. 37 is small
compared to the distance .#,Q, then the quantities rpp
and 7y ,P in the denominators of Egs. (3.3) and (3.4) may
be set constant, and cos(n,rgp)~1." Then the expression
of the wave function in the observing region becomes

¥(Q)~exp |ik {D’+D“’+ 25;2’ } ]
. f_ww vy (3.5)
where
kD, .
o= s Fhm, | :

Using the asymptotic expression of the complex Fresnel
integral appearing in Eq. (3.5), we infer that in the region
of the geometric shadow of the fiber, d <0, the wave
function is given by

]

¢(°)(y,z)~exp
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FIG. 37. The scattering of electrons by the edge of a cylindrical
fiber according to Kirchhoff’s theory of diffraction. In this ap-
proach it is assumed that the wave function in the plane 2 can
be determined quasiclassically, and the probability distribution.
in the observing plane is further obtained with the aid of a free-
particle propagator.

¥ ~exp |ik | D; +D,+

z24d?
2(Ds+Dy,)

-3
w'"
e s

1

X | ——
2i |w”|

(3.7

whereas in the illuminated region, d >0, the wave func-
tion for large w"’ becomes '

) —exp |ik | D; +D, +

22+d2
2(D,+D,)

. 1 )
1T1/2911T/4_+_ o~ e X
2iw

X

(3.8

As mentioned previously, the wave function describing
diffraction by a fiber is the superposition of contributions
arriving in the observing plane from the directions of both
virtual sources. Since the quantity D;+D, +(z?

+d?) /2D +D,) is just the distance from the source
point ., to the observing point Q, the expression of
g[;(O)(Q) in Eq. (3.5) corresponds to a spherical wave,
modulated by the Fresnel integrals. Thus, for small de-
flection angles ¥ and with the notations of Fig. 38, the to-
tal wave function in the observing plane has the form

2
lk {CQ‘FL

(y— bo’}’) iv2
5o ] ’ [ edv, (3.9)
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Q y

FIG. 38. Scattering of electrons by an electrostatic biprism, in
Kirchhoff’s approximation. The wave function in the observing
region is the superposition of the waves arriving from the direc-
tions of the virtual sources .%; and .,. The interference region
is roughly delimited by the geometric shadow of the fiber, corre-
sponding to the two virtual sources.

where
172
rrCo kb()

—Wr= y_(co_b0)7/+ bo 2C0(C0—b0) ] ’

(3.10a)

( be) rfco kb() 12

w2 = |V +lco=0oly— bo 2C0(C0—b0)

(3.10b)

The wave function, Eq. (3.9), yields the probability distri-
bution in the observing plane for various potentials Uy
via Eq. (3.2). The filamentary form of the electron source
would be taken into consideration by an integration over
the z variable of the square of the wave function, Eq.
(3.9), but that does not alter the probability distribution in
the y direction. Let us now compare the patterns ob-
served by Mollenstedt and Diiker (1956) at an electron ac-
celeration voltage of 19.4 kV; these patterns are repro-
duced in Fig. 39, and have the predicted probability dis-
tribution given by Eq. (3.9). If the fiber is not too thin,
and for relatively low potentials U £, it can be shown, by
replacing the Fresnel integrals in Eq. (3.9) with their
asymptotic forms, that the interference pattern is dark in
the central region, while its wings are characterized by
two systems of Fresnel fringes, situated at

(Co—bo)COA« 172

—(co—bo)y+ | —2(N -+ ,
by (co—boly + by ( T)

rfco
tyn=
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FIG. 39. Electron interference with the electrostatic biprism,
for several values of the positive potential U; of the biprism
fiber, as observed by Mollenstedt and Diiker (1956). (a) For
Uy=0, the pattern corresponds to scattering by the biprism
fiber and consists of two series of Fresnel fringes. (b) Uy=1.5
V and (c) Uy;=2.8 V: The distance between the two Fresnel
patterns is diminished. (d) U;=4.0 V: The first maxima in
each series are overlapping and give rise to equidistant Young
fringes. (e) Uy=5.0V, (f) Uy=5.8 V, and (g) U;=7.0 V: The
pattern of Young fringes is broadened and the distance between
consecutive fringes diminished with increasing U, f

where the maxima correspond to N =1,3,5, ..., and the
minima to N=24,6,... . For Uy=0, the deflection an-
gle is =0, and the pattern simply corresponds to the
scattering by the biprism fiber. The position of the
Fresnel fringes predicted by Eq. (3.11) is in good agree-
ment with the observed pattern, Fig. 39(a), when we sub-
stitute in Eq. (3.11) the values of the parameters bo=3.95
cm, ¢g=29.3 cm, A=0.087 A, rp=12 um. Now if the
fiber is set at a positive potential, the separation between
the two series of Fresnel fringes is gradually diminished,
and since according to Eq. (3.2) the deflection angle for
this experiment is given by y=1.1X 10"5Uf, with y in
rad and Uy in V, we expect that the first maxima in each
series should coincide for a fiber potential of U =4V, as
actually observed in Fig. 39(d). For higher potentials U £
of the biprism fiber, the two illuminated wings are over-
lapping in the central part of the observing plane, and the
pattern is dominated by equidistant Young fringes, the
central fringe being light. The distance between consecu-
tive fringes, which is determined by the phases of the ex-
ponential functions appearing in Eq. (3.9), is given in the
observing plane by

CO}\,

= > -12
“_Zboy (3.12)
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so that the central part of the pattern is broadened and
the interfringe diminished with increasing Uy. Moreover,
the intensity of the equidistant fringes is modulated by
the oscillations of the Fresnel integrals in Eq. (3.9). This
behavior is apparent in Figs. 39(e)—39(g), the observed
distance between the fringes being in good agreement with
Eq. (3.12). ’

While it is not surprising that we can predict with ac-
curacy on the basis of quantum mechanics the probability
distributions for various types of scatterings, it is quite re-
markable that patterns characteristic of the interference
between electromagnetic waves can be equally produced
by particles with ‘mass, and the experiments of
Mollenstedt and Diiker (1956) provide an impressive
demonstration of this possibility.

B. Overall displacement of the biprism
interference pattern by homogeneous
magnetic fields

The location of the envelope of an interference pattern
is determined by the strengths of the electric and magnet-
ic fields acting directly on the charged particles. Conse-
quently, in order to obtain positive evidence concerning
the action of the electromagnetic fluxes, it is necessary to
consider the dependence of the interference fringe posi-
tion on the amount of flux enclosed between the arms of
the experiment. Now the shadow of the biprism fiber is
effective up to distances of the order of krfz, which in the
arrangement of Mollenstedt and Diiker (1956) would cor-
respond to several tens of centimeters, so that the region
just behind the fiber is practically inaccessible to the in-
cident electrons. This means that we could study the
quantum effects of the fluxes by altering the distribution
of flux in the shadow of the biprism fiber. A simple way
of doing that would be to apply a uniform magnetic field
parallel to the axis of the fiber, as shown in Fig. 40, and
to observe the position of the interference fringes as a
function of the intensity of the applied field. While the
magnetic force acting directly on the electrons will dis-
place the envelope of the pattern in accordance with the
classical laws, the presence of the magnetic flux in the re-
gion behind the fiber will cause a shift in the phase of the
interfering components, thereby changing the position of
the fringes in a characteristic way. In accordance with
quantum mechanics, a distribution of uniform magnetic
field will shift the interference pattern as a whole, i.e., in
a first approximation, the position of the fringes relative
to the envelope is independent of the intensity of the ap-
plied field. On the other hand, a distribution of magnetic
field having the same intensity as the former in the acces-
sible region but zero intensity in the shadow of the fiber,
as shown in Fig. 41, will still produce the same displace-
ment of the envelope, the position of the fringes relative
to the envelope being, however, shifted by an amount pro-
portional to the applied field. The effects of a uniform
distribution of magnetic field on biprism interference pat-
terns were studied by Chambers (1960), Boersch, Ham-
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FIG. 40. (a) Biprism interference experiment in the presence of
a uniform magnetic field and (b) overall displacement of the
pattern due to the applied field. The envelope of the pattern is
displaced by gBa’(co—b’)/#ikc, while the position of the fringes
relative to the envelope remains unchanged.

isch, Grohmann, and Wohlleben (1961), and Bayh (1962),
who observed an overall shift of the pattern, proportional
to the intensity of the magnetic field. Their observations
thus constitute some of the earliest evidence for the ex-
istence of an action of the inaccessible electromagnetic
fluxes.

The effects on the biprism interference pattern of a
magnetic field B parallel to the z axis, acting in the dotted
region shown in Fig. 40, arise from the curvature of the

Y,
[y
B=0
5] 5] v
P s [y
#
1 B#0
Balcaby) Y
hkc
@) ¢ ®)

FIG. 41. (a) Thought experiment demonstrating the action of
the inaccessible magnetic flux distribution in the shadow of the
fiber, and (b) the corresponding interference pattern. While the
envelope of the pattern is displaced by the same amount as in
the case of the uniform magnetic field, the position of the
fringes relative to the envelope is shifted by gBa'r; /mr#ic fringes.
The shift shown in (b) corresponds to | g | Ba'rs /mfic =—;—.
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electron trajectories by the field, and from the phase shift
due to the flux enclosed between the quasiclassical paths.
We shall determine the probability distribution in the ob-
serving plane with the aid of Kirchhoff’s theory of dif-
fraction. Thus we consider the contribution of the virtual
source .| to the wave function in a plane = lying behind
the fiber to be of the form

ikr o ,+igBa’E/fic
4
PPE M ~e

=0, £>—rf,

, E<—ry (3.13a)

(3.13b)

where we have assumed that b’—by <<by. The contribu-
tion of the virtual source .| to the wave function in the
observing plane is then obtained through the application
of Eq. (3.3). Since the expression of the wave function at
points Q lying in the central part of the observing plane is
controlled by the oscillations of the exponential in Eq.
(3.3), ¥\2(Q) is proportional to

,¢'(IB)(Q)~ f_—wfdgfjwd’)"exp ik(Rylp-"—RPQ)

igBa’
A e, 3.14
+ Zic & ( )
where

(E+boy ) +1?

Rflgzbo+——§ ;bo : (3.152)

(y —£)*+(z —n)>

Rop~co—b . (3.15b)

op=~=Co—bo+ 2co—by)

The variables y and z in Egs. (3.15) are the coordinates of
the point Q in the observing plane, and the distances b,
and ¢ have been defined in Fig. 38. The result of the in-
tegration (3.14) is

b o
W@ ~exp -y | [7 eav, (3.16)
Co —wy
where
172
_ FrCo kb
R — _ __b
1 VB (C() 0)V+ bo [2(:0(00—1)0) ’
(3.17a)
and
yp=y—28% (co—by) . (3.17b)
tikc

The contribution of the virtual source ., in the plane =
is

ikry2P+iqBa'§/ﬁc

PPAED) ~e (3.182)

» E>rf

=0, £<rp, (3.18b)

and it can be shown analogously that the component due
to the virtual source .%, in the observing plane is given by

b o
¢§B)(Q)~exp —ik—:—yyB f 5 eVdv s (3.19)
0 —Ww,
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where

rfco
bo

~ kb, 1/2
Wy = |yp+(co—boly —

ZCO(CO —bo)

(3.20)
The total wave function in the observing plane is then
PP =9 Q) +957(Q) . (3.21)

By comparing Eqgs. (3.16)—(3.20) with the expressions cor-
responding to the field-free situation, Egs. (3.9) and (3.10),
we see that the application of a uniform field B displaces
the whole interference pattern by qBa’(co—bg)/#ike, a re-
sult previously obtained in Sec. I in the quasiclassical ap-
proximation.  This action of the applied field is schemati-
cally represented in Fig. 40(b).

The term gBa'€/#ic appearing in Eqgs. (3.13) and (3.18)
describes the kinetic momentum imparted to the incident
electrons during their traversal of the strip of magnetic
field. In Kirchhoff’s approximation, the presence of the
biprism fiber is taken into consideration by removing
from the integration in Eq. (3.3) the portion of the plane
3 lying in the shadow of the fiber, while leaving the phase
unchanged. Consequently the phases of the components

BY&,m) and ¢SB(£,7m), evaluated at §=—r; and =7y,
respectively, differ by 2gBa’ry /#c, and this shift is entire-
ly due to the magnetic flux lying in the shadow of the
fiber. Let us consider, for example, the effects of the dis-
tribution of magnetic field shown in Fig. 41(a); this field
has the same intensity as the former in the accessible re-
gion and zero intensity in the shadow of the fiber. In this
case the wave function in the plane = would be

eiqBa'rf/ﬁc_l/}(lB)(g’n)’ §< —rf (3.22a)

POEm=10, —rp<E<r 3:220)
f f

R —igBa'r s /Hic (23)(§’77)’ E> rp. (3.22¢)

However, while the envelope of the pattern in the observ-
ing plane, corresponding to the form of the wave func-
tion, Eq. (3.22), will still be displaced by the same
amount, gBa’(cy—bg)/hkc, this time the position of the
fringes relative to the envelope will be shifted by
gBa’ry /mfic fringe widths. Thus the effects of a uniform
magnetic field provide relevant information concerning
the effects of the inaccessible magnetic flux distributed in
the shadow of the biprism fiber.

The first experimental results concerning the quantum
action of enclosed electromagnetic fluxes were reported by
Chambers (1960), who produced interference fringes by
an electrostatic biprism consisting of an aluminized
quartz fiber. Among other experiments, Chambers exam-
ined the effect of the magnetic field produced by a pair of
single Helmholtz coils 3 mm in diameter situated just
behind the biprism, and observed that while fields up to
0.3 G were applied, sufficient to displace the pattern by
up to 30 fringe widths, the appearance of the pattern was
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FIG. 42. Effect of a homogeneous magnetic field on the elec-
tron interference pattern, as observed by Bayh (1962): (a) in-
terference pattern without magnetic field; (b) overall shift of the
pattern by a distance proportional to the applied field. The ar-
rows mark the location of the observing plane on the photo-
graphic plate.

completely unchanged. His observations were confirmed
by Boersch, Hamisch, Grohmann, and Wohlleben (1961).
The action of a homogeneous magnetic field was also in-
vestigated by Bayh (1962), who reported the patterns
reproduced in Fig. 42. In Fig. 42(a) we see the system of
equidistant fringes corresponding to a positive potential
of the biprism fiber, the pattern being symmetric and hav-
ing the central fringe light. The pattern shown in Fig.
42(b) was obtained in the presence of a magnetic field
behind the fiber, produced with a pair of Helmholtz coils.
We see that the interference pattern is displaced as a
whole, while the position of the fringes relative to the en-
velope is unchanged, and in particular the central fringe
remains light. Thus the observed overall displacement of
the electron interference patterns by homogeneous mag-
netic fields constitute a first verification of the reality of
the quantum effects of electromagnetic fluxes.

The action of field strengths on electron interference
patterns was studied experimentally by Boersch, Hamisch,
Wohlleben, and Grohmann (1960,1962), who used as a
biprism antiparallel ferromagnetic domains, and also by
Tonomura (1972). More details on the theoretical
analysis of diffraction effects in electron microscopy can
be found in the articles of Wohlleben (1967) and Cohen
(1967).

C. Shift of the fringes relative
to the envelope, produced
by ferromagnetic filaments

The characteristic action of the electromagnetic fluxes
is the shifting of the fringes relative to the envelope of the
interference pattern, produced by distributions of flux
which are completely enclosed in a region situated be-
tween the interfering components of the incident electron
beam. Since the separation between the coherent electron
waves is of the order of a few microns in most biprism ex-
periments, the enclosed flux is often generated by thin fil-
aments of ferromagnetic materials. Such experiments
were carried out by Chambers (1960), Fowler, Marton,
Simpson, and Suddeth (1961), and Boersch, Hamisch,
Grohmann, and Wohlleben (1961,1962) for a cylindrical
distribution of the enclosed flux, and more recently by
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Tonomura et al. (1982) for a toroidal distribution of the
flux. The predicted shifts of the fringes relative to the en-
velope of the pattern were observed in all these experi-
ments, while the overlap between the incident electrons
and the magnetic flux was insignificant.

The first positive observation of the action of an en-
closed magnetic flux belongs to Chambers (1960), who
produced the fringes with the aid of an electrostatic
biprism consisting of an aluminized quartz fiber with a
diameter of 1.5 um flanked by two grounded metal plates.
Moreover, unlike the experiment of Mollenstedt and
Diker, Chambers’s experiment had as its source a spot
with a diameter of about 2000 A, and the distances b,
and ¢y shown in Fig. 34 were by=6.7 cm and ¢y, =20.1
cm. In order that the interference pattern not be blurred
out by the finite source size, Chambers used very small
biprism angles, of about 2 10~° rad, to obtain a fringe
width in the observing plane of about 6000 A, for an in-
cident electron energy of 20 keV. The magnetic flux was
produced by an iron whisker, about 1 pm in diameter and
0.5 mm long, placed in the shadow of the fiber. Such
whiskers are single magnetic domains (Kittel, 1946), and
moreover they are found to taper with a slope of 10~ rad
(DeBlois, 1958), as schematically shown in Fig. 43. Con-
sequently, the amount of enclosed magnetic flux is chang-
ing in the z direction of the axis of the whisker, which
means that the relative phase of electron waves passing by
the two sides of the whisker depends on the height z. As
a result, the fringes will be tilted with respect to the en-
velope of the interference pattern, while the envelope it-

FIG. 43. Tilted fringes in the presence of magnetic flux en-
closed by a tapering whisker. The whisker is a single magnetic
domain of changing diameter, and as a result the interference
fringes are tilted relative to the envelope by an angle proportion-
al to the rate of change of the enclosed magnetic flux. While
the tilt of the fringes can be attributed to the leakage of the ra-
dial field B,, the total displacement of a fringe at a given sec-
tion of the whisker is a measure of the magnetic flux enclosed at
that section. The direction of the enclosed flux F shown in the
drawing is opposite to the direction of the z axis, which points
downward, and the charge of the incident electron is negative.
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self will not be affected by the presence of the whisker.
Since an iron whisker with a saturation field of 2 10* G
and a diameter of 1 um contains about 400 flux units,
where one flux unit is 27#ic /e =4.1x 1077 Gcem?, the
flux content will change in the z direction at a rate of the
order of 1 flux unit per micrometer. Moreover, since
there is a pinhole magnification of ¢y/by=3 between the
biprism-fiber assembly and the observing plane, the
change in the amount of flux enclosed in the whisker will
produce a shift of 27 in the relative phase of the coherent
components of the electron beam over a distance of 3 um
in the observing plane. Since the fringe width in the ob-
serving plane is 0.6 um, the predicted tilt of the fringes
relative to the envelope is roughly 1 in 5. Precisely this
was observed by Chambers, as can be appreciated from
the patterns reproduced in Fig. 44. It is also apparent
from Fig. 44(b) that the whisker taper is not uniform, but
in this case becomes very small in the upper part of the
figure.

The action of the magnetic flux enclosed in the taper-
ing whisker can in fact be demonstrated by observing the
fringes produced in the shadow of the whisker alone. The
diffraction of one of the components of the incident beam
in the shadow of the whisker is described by Egs. (3.7)
and (3.6), whence it can be inferred that the distance be-
tween these fringes is given by

Meo—bg)
A, 207000

y (3.23)

2rf

FIG. 44. Action of the magnetic flux of a tapering whisker on
the biprism interference pattern, as observed by Chambers
(1960): (a) fringe pattern due to biprism alone; (b) tilted fringes
produced by a tapering whisker situated in the shadow of the
biprism fiber. The tilt of the fringes relative to the envelope is
proportional to the rate of change of the enclosed flux along the
axis of the whisker, while the total displacement of a given
fringe at a particular section is a measure of the magnetic flux
enclosed at that section. The drawings reproduce the central
part of the original patterns.
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In the absence of magnetic flux the fringes are parallel to
the envelope of the pattern, as can be appreciated from
the pattern observed by Mbollenstedt and Diiker (1956),
reproduced in Fig. 45(a). The electron wavelength was
A=0.087 A, the distance ¢y —by=25.4 cm, and the diam-
eter of the fiber, set at zero potential, was 2r=2.4 pm.
The observed distance between the fringes reportedly was
9200 A, in agreement with Eq. (3.23). The same type of
fringes was studied by Chambers (1960) in connection
with the problem of the quantum effects of the fluxes;
Chambers replaced the fiber by a tapering whisker. As
can be seen in Fig. 45(b), the fringes in the shadow of the
whisker, which are due to the interference of the waves
passing by both sides of the flux, are tilted relative to the
envelope, while the Fresnel fringes corresponding to each
of the coherent components are not affected by the en-
closed flux. The parameter w” defined in Eq. (3.6),
which in the present case has the expression
w" ~rs[kbo/2co(co—bg)]'"?, is of the order of w"=1, so
that the wave function, Eq. (3.5), cannot be approximated
by the asymptotic form, Eq. (3.7). Consequently Eq.
(3.23) is not applicable to the pattern in Fig. 45(b).

As pointed out by Fowler, Marton, Simpson, and Sud-
deth (1961), the study of biprism interference patterns
provides a sensitive method for investigating the magnetic
properties of very thin whiskers. Fowler et al. have pro-
duced fringes with the aid of an electrostatic biprism
whose fiber was the tip of an iron whisker several milli-
meters in length. The source in their experiment was a
spot with a diameter of 200—500 A, while the distances
by and ¢, were by=5.2 cm and cy=47.2 cm, giving a
magnification of about cq/by~9. The beam energy was
48—50 keV. The interference pattern of a very slightly
tapered whisker, observed by Fowler et al (1961), is repro-
duced in Fig. 46. As can be appreciated from Fig. 46(a),
the fringes are nearly parallel in the vicinity of the tip of
the whisker, which means that the whisker is of nearly
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FIG. 45. Electron interference (a) in the shadow of a 2-um
fiber, observed by Mollenstedt and Diiker (1956); (b) in the sha-
dow of a tapering whisker, observed by Chambers (1960). The
fringes in the shadow of the whisker, which are due to the in-
terference of the components passing by both sides of the region
of flux, are tilted relative to the envelope, while the Fresnel
fringes, each corresponding to a coherent component, are not
affected by the enclosed flux. The scales are different in the
two drawings, which reproduce the original patterns.
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FIG. 46. Biprism interference pattern of a very slightly tapered
whisker, observed by Fowler, Marton, Simpson, and Suddeth
(1961): (a) tip of the whisker; (b) continuation of (a). The offset
at the top of (b) is identical with that at the bottom of (a).

(3)

uniform diameter in the straight section at the end. At a
point roughly 30 um from the end, the fringes are offset
slightly and assume a small tilt. The offset was attributed
by Fowler et al. to the presence of a longitudinal field at
the point of changing taper, which affects the envelope of
the pattern. A little further along, the fringes are offset
again and assume a greater tilt, as shown in Fig. 46(b).
Fowler et al. also reported that when the whisker had its
magnetization reversed by a strong external field, the
direction of the fringe tilt was found to reverse, while the
general details of the fringe pattern remained the same,
with offsets and tilt occurring in the same points.

The tilt of the fringes relative to the envelope can be at-
tributed to the radial leakage field of the tapering whisk-
er. As pointed out by Pryce (1960), immediately outside a
tapering whisker carrying a flux F, the leakage field is ra-
dial and given by B,= —(1/2#%r)dF /dz. This field exerts
a force on the incident electrons and gives them a
momentum component p, = *(e/2c)dF /dz, the two signs
corresponding to the different sides of the whisker, as
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shown in Fig. 43. Consequently, the phase of the contri-
butions arriving in the observing plane from the direc-
tions of the two virtual sources is

e dF  kybg

— = 3.24
27 dz co Yo 3.24)

so that the gradient in the z direction of the phase differ-
ence between these waves is given by d(eF /#ic)/dz. This
is precisely the rate of change of the quantum phase
difference eF /#c, due to the enclosed flux F. However,
as mentioned by Pryce (1960) and stressed by Aharonov
and Bohm (1961), while the tilt or slope of the fringes is
due to the leakage field of the whisker, the total displace-
ment of a fringe at a given section of the whisker still de-
pends on the flux enclosed at that section. We could
determine the total displacement of the fringe by follow-
ing the progressive buildup of the phase difference from
the free end of the whisker, where it is zero, to any section
where interference is being observed. Such a dependence
on the leakage field at all sections of the whisker is, how-
ever, equivalent to a dependence on the amount of flux
enclosed at a single section, and both viewpoints demon-
strate that a knowledge of the field strengths acting
directly on the incident electrons in the vicinity of a par-
ticular section of the whisker does not completely deter-
mine the resulting probability distribution in the observ-
ing plane.

The action of the magnetic flux was investigated in a
different arrangement by Boersch, Hamisch, Grohmann,
and Wohlleben (1961), and Boersch, Hamisch, and
Grohmann (1962), who produced the flux by a thin layer
of Permalloy deposited on the back of the biprism fiber.
Boersch et al. observed the predicted flux-dependent shift
of the fringes relative to the envelope, while the deviation
due to the return magnetic field was about 10~° rad, com-
pared with several 107> rad for a fringe width. In the ar-
rangement of Boersch, Hamisch, and Wohlleben (1962)
shown in Fig. 47, the electron source, obtained by
electron-microscopic demagnification, had a diameter of
about 1200 A, and the energy of the electron beam was 40
keV. The dimensions of the layer of Permalloy were
about 7 mm length, 5000 A width, and 200 A thickness,
and since the source was a pointlike spot, every section of
the interference pattern corresponded to a determined sec-
tion of the layer. We have reproduced in Fig. 48 a se-
quence of patterns observed by Boersch, Hamisch, and
Grohmann (1962), which demonstrate the action of the
enclosed magnetic flux. In Fig. 48(a) we see a biprism in-
terference pattern in the absence of the layer of Permal-
loy, the central fringe of the pattern being light. In Fig.
48(b) we see that the effect of the layer of Permalloy
deposited in the shadow of the fiber is to interchange the
light and dark fringes, while the envelope of the pattern is
unaffected, which means that the enclosed flux was an
odd multiple of 7#ic /e. In the pattern shown in Fig. 48(c)
the direction of the enclosed flux was reversed by an
external magnetic field, and the identity of patterns in
Figs. 48(b) and 48(c) demonstrates the periodicity with
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FIG. 47. Arrangement used by Boersch, Hamisch, and
Grohmann (1962) to observe the quantum effects of the magnet-
ic flux produced by a thin layer of Permalloy, deposited on the
back of the biprism fiber. ‘

2mfic /e of the effects of the enclosed fluxes. The ob-
served interchange of light and dark fringes between Fig.
48(a) and Figs. 48(b) or 48(c) constitutes a clear demon-
stration of the reality of the quantum effects of enclosed
fluxes.

From the analysis of flux-dependent interference pat-
terns it is possible to determine the flux unit 27fic /e. The
value of the constant 27fic /e, measured in connection
with the quantum effects of the fluxes, was first reported
by Modllenstedt and Bayh (1962), as will be discussed in
the next section. In order to measure the constant
27tic /e, Boersch, Hamisch, and Grohmann (1962) studied
the effects on the electron interference pattern of magnet-
ic fields in the transition region near the end of a thin
layer of Permalloy deposited on the back of the fiber, as
shown in Fig. 49(a). The patterns reproduced in Figs.
49(b) and 49(c) are the result of a quantum shift propor-
tional to the enclosed magnetic flux, and of the Lorentz
force acting in the vicinity of the end of the layer of
Permalloy. The azimuthal component of the vector po-
tential is given by

(3.25)

~ F z
Ag=—— |l—————5757 | »
™ Amr (22412172 ]
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FIG. 48. Biprism patterns observed by Boersch, Hamisch, and
Grohmann (1962), which demonstrate the quantum effects of
the fluxes: (a) biprism interference pattern in the absence of the
layer of Permalloy; (b) and (c), patterns in the presence of a
layer of Permalloy deposited on the back of the biprism fiber.
The arrows indicate the direction of the enclosed magnetic flux.
The presence of the magnetic flux interchanges in this case the
position of light and dark fringes between (a) and (b) or (c), an
effect that is specific for the enclosed fluxes.

where z is the distance from the gold-Permalloy junction
shown in Fig. 49(a), and r the distance to the axis of the
filament of Permalloy, approximated as a string. The z
component of the force is then

13, ~ zF

r ar(’A")_ 4rm(z24r2)372° (3:26)
so that the z component is zero in the plane of the junc-
tion and has opposite directions below and above that
plane. Consequently, the Lorentz force displaces the en-
velope of the interference pattern in opposite directions,
the envelope being unaffected in the plane z=0. More-
over, reversal of the magnetic field results in opposite dis-
placements of the envelope, as is apparent from a compar-
ison of patterns in Figs. 49(b) and 49(c). The magnetic
flux enclosed in the Permalloy layer can be evaluated as
the product of the saturation field and the area of the fila-
ment, which further divided by the fringe shift yields the
flux unit. The flux-dependent phase shift can be deter-
mined from the connection of the fringes in the region of
the gold-Permalloy junction. The experimental value ob-
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FIG. 49. (a) Diagram of the Permalloy-gold junction used by
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Boersch, Hamisch, and Grohmann (1962) in the experimental

determination of the flux unit 27#ic /e; (b) and (c), fringe shifts
in the biprism interference patterns, produced in the vicinity of
the Permalloy-gold junction. The arrows indicate the directions
of magnetization in the two cases. The displacement of the en-
velope seen in (b) and (c) is due to the longitudinal component of
the magnetic field in the junction region, while the tilting of the
fringes relative to the envelope is the effect of the magnetic flux
enclosed between the interfering waves.

tained by Boersch, Hamisch, and Grohmann (1962) was
3.93%10~7 Gcm?, with an error of 5%, in agreement
with the theoretical value F;=4.13X 107 G cm?.

The tilting of the fringes relative to the envelope, ap-
parent in Figs. 49(b) and 49(c), is due to the radial com-
ponent of the magnetic field in the transition region. The
fact that the interference fringes are sharp even in the
transition region demonstrates that the electrons arriving
at a given section of the pattern are passing by a well-
determined section of the fiber, so that, as discussed ear-
lier in this section, the tilt of the fringes relative to the en-
velope also constitutes a verification of the reality of the
quantum effects of the fluxes.

The quantum effects of a ferromagnetic layer evaporat-
ed on the biprism fiber have also been studied by Mat-
teucci and Pozzi (1978). They observed the same inver-
sion of contrast of the fringes produced by the enclosed
flux, and reported that the magnetic field leakage was
negligible.

Although the cylindrical distributions of ferromagnetic
materials described above all yield a small longitudinal
magnetic field acting on the incident electrons, the return
field produces an overall displacement of the interference
pattern, and not shifts of the fringes relative to the en-
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velope. The magnitude of the deflection produced by the
return fields is in fact negligible when compared with the
fringe shift due to the enclosed flux. It is, however, in-
teresting to consider the effects on the electron interfer-
ence patterns of a toroidal distribution of magnetic flux, a
case when there is no leakage field. Such an experiment
was recently carried out by Tonomura et al. (1982), who
made a small toroidal magnet of a thin film of Permalloy,
the toroid width of a typical sample being 6400 A and the
film thickness 400 A. This sample was illuminated by a
collimated electron wave, while another collimated wave,
coherent with the first, propagated externally to the
toroid, as shown in Fig. 50. The two beams were then
combined so as to interfere, and the hologram so obtained
was then optically reconstructed on an enlarged scale (Ga-
bor, 1949,1952).

The phase shift produced by the toroidal magnet in the
phase of an illuminating electron wave is given by

0, pa<p (3.27a)
e(py—p)F

AP, =!Tic(pp—p1)’ P1<p<p2 (3.27b)
eF
— 3.27¢)
7 P<pPi> (
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FIG. 50. Experimental arrangement used by Tonomura et al.
(1982) to observe the quantum effects of the magnetic flux en-
closed in a torus. The toroidal sample was illuminated by a col-
limated electron wave, while another collimated wave, coherent
with the former, propagated externally to the toroid. The two
beams were brought to interfere with the aid of an electrostatic
biprism, and the hologram thus obtained was subsequently
reconstructed on an enlarged scale.
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FIG. 51. Shift A®, produced by a toroidal magnet of flux F in
the phase of the incident electron wave. The contours of con-
stant phase are concentric circles in the plane perpendicular to
the incidence direction, the phase being constant outside the
shadow of the sample, while the total phase shift in the inner re-
gion is given by gF /7ic.

where p, and p, are, respectively, the minor and major ra-
dii of the ferromagnetic annulus, and F is the enclosed
flux, as shown in Fig. 51. The term eF /#ic(p,—p;) is
equal to the transverse azimuthal component in the y,z
plane of the kinetic momentum acquired by the incident
electron as it crosses the region of flux. According to Eq.
(3.27), the contours of constant phase of the electron wave
illuminating the magnetic sample are concentric circles in
the plane perpendicular to the incident direction, where
the phase is constant outside the shadow of the sample,
and the total phase shift in the inner region is given by
eF /fic. Precisely this was observed by Tonomura et al.
(1982), who obtained experimentally the contour map of
the electron phase reproduced in Fig. 52. It is apparent
from Fig. 52 that the phase in the inner region of the pat-
tern is shifted by an odd multiple of 7, while the shape of
the magnetic sample appears as a clear image on the in-
terferogram. As pointed out by Tonomura et al., the
part of the beam transmitted through the sample does not
contribute to points outside the sample image, so that the
phase of the beam reaching the inner region has indeed
been shifted by the magnetic flux enclosed in the sample.
The total phase shift between the inner and exterior re-
gions is equal to 5.5 times 2, according to the pattern
shown in Fig. 52, in agreement with the theoretical value
eF /#ic obtained for a flux F corresponding to an enclosed
magnetic field of 9500 G and a transverse area of
6400400 A2,

The action of the magnetic flux enclosed in the toroidal
sample can also be appreciated from the pattern repro-
duced in Fig. 53, obtained by the interference of the elec-
tron wave illuminating the sample with a coherent wave
inclined at a certain angle 8 in the x,z plane. The in-
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FIG. 52. Contours of constant phase of the electron wave il-
luminating a toroidal magnet, as observed by Tonomura et al.
(1982). The phase in the inner region of the pattern is shifted by
an odd multiple of 7, while the shape of the magnetic sample is
reproduced as a clear image on the interferogram. Since the
sample does not contribute to points outside the sample image,
the phase of the beam reaching the inner region was shifted by
the enclosed magnetic flux.

terference fringes are the lines of constant phase differ-
ence 8,, where according to Eq. (3.27) §; is given by

kBp cosX, py<p (3.28a)
e(p—p)F

k X ———————, 28b

5, — |kBp cos %ic(py—py)’ P1<P<P2 (3.28b)

kchosX—%cE, pP<p1 (3.28¢)

and X is the polar angle in the plane of the torus, relative
to the z axis. Thus we expect to see a pattern of parallel
fringes in the exterior region p > p,, continued in the case
of perfect radial symmetry by segments of conic cross
sections with the focus at the center of the torus, abutting
another system of parallel fringes in the inner region
p<pi; we would expect the inner system to be shifted
with respect to the exterior fringes. by eF/2w#c fringe
widths. In the pattern observed by Tonomura et al. and
reproduced in Fig. 53, we have kS <eF/#ic(p,—p,;), so
that the conic cross sections are ellipses. The distance be-
tween consecutive fringes is small at the bottom of the
sample image, where the two wave vectors have the same
direction, while the distance between fringes is compara-
tively large at the top of the pattern, where the com-
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FIG. 53. Interference pattern obtained by the superposition of
the wave illuminating the sample and of a coherent wave in-
clined at a certain angle relative to the former, as observed by
Tonomura et al. (1982). The pattern consists of a system of
parallel fringes in the exterior region, continued by segments of
ellipses with the focus at the center of the toroidal sample, and
terminated by another system of parallel fringes in the inner re-
gion, shifted with respect to the exterior ones by gF /#ic.

ponents of the wave vectors have opposite directions. To-
nomura et al. (1982) have also studied the interference
pattern of the toroidal sample at several incident electron
energies, a parameter which markedly affects the penetra-
bility of the electrons into the magnetic sample, but would
not affect the flux-dependent phase difference. This was
confirmed by Tonomura et al. at 80, 100, and 125 keV, a
fact which proves that the quantum effects of the fluxes
are independent of the degree of penetrability of the in-
cident particles into the region of the field strengths.

D. Shift of the fringes relative
to the envelope, produced
by microscopic solenoids

Since in the interference experiments described in the
preceding section the separation between the coherent
electron beams was of the order of a few micrometers, an
amount of enclosed magnetic flux comparable to the flux
unit Fy=2mfic /e could be produced only by filaments of
ferromagnetic materials, whose flux content was not sub-
ject to external control. On the other hand, the use of a
microscopic solenoid as flux-carrying object requires a
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larger separation between the coherent electron waves, of
the order of a few tens of micrometers. In-an experiment
with a single electrostatic biprism, the fringes are observ-
able provided that the fringe width Acy/2byy, Eq. (3.12),
exceeds the width d, of the electron source. This condi-
tion imposes an upper limit on the diameter of the
biprism fiber, of the order of Acy/2d,. Assuming that
A=0.06 A, d,=200 A, c¢y=50 cm, the diameter of the
fiber, and thus the separation between the coherent beams,
should be less than 70 um. However, with a fiber of such
a large diameter it would also be necessary to use a large
biprism angle ¥, which in turn yields a small fringe width
in the observing plane, so that the corresponding pattern
would be difficult to observe.

As pointed out by Mollenstedt and Bayh (1961,1962)
and by Bayh (1962), a relatively large separation between
the coherent beams can be achieved without over-reducing
the fringe system, by using three electrostatic biprisms in-
stead of one, arranged as shown in Fig. 54. The separa-
tion of the beams is produced by the first fiber, held at a
negative potential. The deflections due to the second
biprism, held at a positive potential, render the directions
of the two beams again convergent toward each other.
However, the relative inclination of the beams is so large
at this stage that the interference fringes cannot be ob-
served. Therefore, a third biprism at a negative potential
reduces the angular deflection of the beams until the in-
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FIG. 54. Sequence of three electrostatic biprisms used by
Mollenstedt and Bayh (1962) and by Bayh (1962) to produce a
large separation between the coherent electron beams, without
overreducing the fringe system. The fibers of the first and third
biprisms are at negative potentials, while the fiber of the second
biprism is at a positive potential. Since the deflection angle is
independent of the distance from a ray to the fiber, the interfer-
ence pattern in the observing plane is determined by the final
position of the virtual sources.
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terference fringes become observable. Since the deflection

angle by each biprism is independent of the distance from

a ray to the fiber, the interference pattern in the observing
plane depends on the final position of the virtual source.
The maximum separation between the two beams is ob-
tained in the region above the fiber of the second biprism,
the magnitude of the separation depending on the poten-
tial of the first biprism fiber and on the distance between
biprisms I and II.

Mollenstedt and Bayh (1962) and Bayh (1962) used the
system of three electrostatic biprisms to observe the ef-
fects on the electron interference pattern of a magnetic
flux enclosed in a solenoid having a diameter of less than
20 pum, situated in the region above the second biprism
fiber, as shown in Fig. 55. The electron source, obtained
by electron-microscopic demagnification, was a filament
having a width of about 100 1&, and the distance from the
filament to biprism I measured 24.5 cm. The diameter of
the fiber of the first biprism was about 3 ym. The dis-
tance between biprisms I and II was 47 cm, while the dis-
tance between biprisms II and III was 5 cm, small enough
so that the electron beams would not intersect the fiber of
the third biprism. The observing plane was 25 cm below
biprism III, and the interference pattern formed in that

FIG. 55. Experimental arrangement used by Mollenstedt and
Bayh (1962) and Bayh (1962) to observe the quantum effects of
magnetic flux enclosed in a microscopic solenoid. The magnetic
yoke serves to conduct the return magnetic flux enclosed in the
solenoid.
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plane was further magnified. The energy of the electron
beam was 40 keV. A shield of highly permeable fer-
romagnetic material protected the interferometer against
stray magnetic fields, which are particularly disturbing
for a large separation of the beams. The enclosed mag-
netic flux was produced with the aid of a Wolfram coil
whose diameter measured less than 20 um and whose
length was more than 5 mm. The return magnetic flux of
the coil was conducted through a highly permeable fer-
romagnetic yoke. Bayh (1962) calculated that, because
the winding is not completely dense, the magnitude of the
longitudinal magnetic component becomes as small as
5% 1073 of the magnetic field in the solenoid at a distance
of 5 um from the surface of a typical solenoid used in the
experiments. Moreover, Bayh (1962) checked that the
magnetic field generated by the longitudinal component
of the current flowing in the solenoid did not significantly
affect the interference pattern. Now, according to Eq.
(3.7), the probability density in a plane just above the
second biprism, at a distance of 10 um toward the center
from the geometric shadow of the first fiber, is 2 103
of the density observed in the illuminated part of the
aforementioned plane. Since the separation between the
beams is of the order of 50—60 um in the plane situated
above the second fiber, the overlap between the incident
electrons and the magnetic field was indeed fairly small in
these experiments.

In order to record the effects on the interference pat-
tern of the magnetic flux enclosed in the solenoid, a slit
having a width of 0.5 mm was placed in front of the pho-
tographic film, perpendicular to the direction of the
fringes. The increase in current through the solenoid was
then synchronized with the displacement of the film in
the unperturbed direction of the fringes, thus yielding the
pattern observed by Bayh (1962), which is reproduced in
Fig. 56. As predicted theoretically, the fringes are shifted
by an amount proportional to the enclosed flux, while the
envelope of the pattern is not affected by the magnetic
flux.

Now a changing magnetic flux gives rise to an electro-
motive force around the solenoid, which would affect the
energy of the electron beam, the difference between the
energy of the two coherent components being proportion-
al to the rate of change of the magnetic flux,

_edF

A& = e df

(3.29)

The relative phase of these components would be progres-
sively shifted in time as

exp —éngdt =exp (3.30)

ie
%de],

which formally represents just the quantum action of the
magnetic flux enclosed in the solenoid. The presence of
the electromotive force in the case of a variable flux is the
analog in time of the radial leakage field of a spatially
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FIG. 56. Action of magnetic flux enclosed in a microscopic
solenoid on a biprism interference pattern, as reported by Bayh
(1962). At the bottom and at the top of the pattern, the magnet-
ic flux is held constant. In the middle, the increase in magnetic
flux is synchronous with the displacement of the photographic
film; the flux produces a shift of about four fringes, while the
envelope of the pattern remains unchanged.

changing flux of the tapering whisker mentioned in Sec.
III.C. However, this situation demonstrates with even
more clarity the limitations of the concept of force acting
directly on a particle, when applied to the description of
quantum interference processes. Indeed, the time integra-
tion appearing in Eq. (3.30) is meaningful only if the
phase of each electron wave is preserved in the incidence
region for the entire duration of the experiment. Howev-
er, while the amplitudes for a given electron passing by
opposite sides of the solenoid are coherent, the phases of
distinct electrons emitted by different parts of the source
or at different instants are incoherent. Since a given elec-
tron is represented by a wave train having a certain width,
we can predict on the basis of the leaking electromotive
force that the fringes will be tilted on a time scale. A pat-
tern like that in Fig. 56 is obtained by the scattering of
many independent electrons, and to each of these elec-
trons the region in the vicinity of the solenoid appears to
be identical as far as the fields acting directly on them are
concerned. However, despite this identity conceived in
terms of accessible field strengths, we find that the proba-
bility distribution in the observing plane is not the same
for all the incident electrons, but rather the interference
fringes observed at different instants of time are shifted
by a distance proportional to the amount of enclesed flux.
Since the traversal time of an electron from the source to
the observing plane, of the order of 1078 sec, is extremely
small compared to the time necessary to obtain the in-
terference pattern, the tilted fringes reproduced in Fig. 56
constitute in fact a sequence of patterns observed at suc-
cessive values of the magnetic flux. The fairly small over-
lap between the incident electrons and the field strengths,
in the experiments of Mollenstedt and Bayh (1962) and
Bayh (1962) present a convincing demonstration of the
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quantum action of the electromagnetic fluxes.

Mollenstedt and Bayh (1962) were the first to use the
quantum effects of the fluxes for measuring the unit of
magnetic flux Fy=27fic/e. They determined from the
parameters of the microscopic solenoids and from the
electric current the amount of magnetic flux that pro-
duced a phase shift by 27 in the interference pattern. The
measured value of the flux unit was 4.07X10~7 Gcm?,
with an error of 14%, in good agreement with the
theoretical value Fy=4.13x10"7 G cm?.

A similar experiment was later conducted by Schaal,
Jonsson, and Krimmel (1966), who designed an electron
interferometer that made possible the splitting of the two
coherent beams up to 120 pum. In this interferometer the
second biprism of three was replaced by an electrostatic
cylinder lens, the mechanical vibrations were minimized,
and the magnetic fields were alternated. The magnetic
field was produced by a solenoid having a diameter of 32
pum; Schaal et al. observed shifts up to 20 fringe widths.
The measured value of the flux unit was 4.15X 1077
G cm?, with an error of 1.5%.

E. Flux-dependent effects observed
with superconducting quantum
interference devices

A property of many metals at very low temperatures is
the coherence of the superconducting state on a macro-
scopic scale. As pointed out by Bardeen, Cooper, and
Schrieffer (1957), superconductivity is due to an effective
attractive interaction between electrons, which results
from electron-phonon coupling. The consequence of the
attractive interaction is the formation of pairs of electrons
having opposite spins and momenta. Since the average
distance between the electrons of a given pair is larger
than the average distance between pairs, this gives corre-
lations between electrons of opposite spin, extending over
a large distance in real space. The possibility of observing
macroscopic quantum interference effects in the super-
conducting state was pointed out by Josephson (1962),
who predicted that a current will flow through a thin in-
sulating barrier separating two superconductors, by means
of quantum-mechanical tunneling of electron pairs, even
if there is no voltage across the junction. Since the tun-
neling current is a periodic function of the phase differ-
ence across the junction, the current flowing through a
pair of Josephson junctions coupled in parallel could then
be controlled by the application of an external magnetic
field. In this section we shall describe the experiments of
Jaklevic, Lambe, Mercereau, and Silver (1964a,1964b,
1965), who used such superconducting quantum interfer-
ence devices to study the quantum effects of magnetic
fluxes. They observed a flux-dependent modulation of the
tunneling current through the junction pair, even when
the magnetic flux was confined to a region not accessible
to the superconductor, thereby confirming the reality of
the quantum effects of enclosed fluxes.

We shall analyze the Josephson junction, shown
schematically in Fig. 57, as a system of two quantum
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FIG. 57. Josephson junction of two superconductors a,b,
separated by a thin insulating barrier ¢. A current flows
through the junction, due to the quantum-mechanical tunneling
of electron pairs, even if there is no voltage across the junction.
In the presence of a uniform magnetic field B applied perpen-
dicularly to the junction, the tunneling current depends on the
magnetic flux enclosed by the effective cross-sectional area of
the junction (¢ +2A, Jw, where A, is the penetration depth of the
magnetic field into the superconductor.

states coupled together, an approach outlined by Feynman
et al. (1965, Vol. III). Thus we let ¥; be the amplitude
for finding an electron pair on one side of the barrier, and
1, the amplitude for finding the pair on the other side;
for simplicity, moreover, let us assume that the junction is
symmetric. Then the amplitudes ¥; and v, are connected
by the equations :

) . 2
#30 I LA 7T Ads, (3.31a)
ot 2
d i 2
52 _ e iarte [ Adsy | AV (3.31b)
at 2
where g = —2e is the charge of the pair, % is a charac-

teristic of the junction, V is the potential difference across
the function, and A is the vector potential in the region
of the insulating barrier. Equations (3.31) can be
analyzed in terms of the electron densities pi,p5 and the
corresponding phases 6, and 6, by the substitutions

0,

Yi=pie", (3.32a)

Yr=pre’? (3.32b)
The resulting equations are

%(p%)= 2 Hpipsing (3.33a)

%(,;g) - %.Z/plpzsinﬁ , (3.33b)
and

0,— %—%cosS-}— -‘% , (3.342)

' 1
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cosd — v

F Pi1
X P , 3.34b
>~ % p, 2 (3.340)
where
2
8=0,—0,+L [ Ads. (3.35)

Now Egs. (3.33) describe how the pair density changes in-
itially, and therefore they yield the current J ~p, that be-

ings to flow across the junction,
J =Jysind . (3.36)

On the other hand, from Egs. (3.34) we see that for p;=p,
we have

0,—0,=— sl (3.37)

so that the quantity & in Eq. (3.35) becomes

2
8=80+L |- [ th+%fl Ads‘. (3.38)

If the voltage V across the junction is constant and not
equal to zero, the argument of the sine in Eq. (3.36) will
oscillate rapidly, and the average current will be zero. On
the other hand, if V=0, the tunneling current is given by
J =Jgsin

q 2
So+ o [ Ads |, (3.39)

so that we can get any current between J, and —J,, de-
pending on the difference 8, between the phases on the
two sides of the barrier. The stationary superconducting
tunneling effect described above was first observed experi-
mentally by Anderson and Rowell (1963), while the tun-
neling current that would flow under certain resonance
conditions when an oscillating voltage V is applied across
the junction was observed by Shapiro (1963).

The effect on a Josephson junction of width w of an ap-
plied magnetic field B threading through the junction as
shown in Fig. 57 can be computed by summing the
current density, Eq. (3.39), over the entire area of the
junction. The tunneling current thus obtained is given by

sin(qF; /2%ic) .

=Jo—————sind,,

(3.40)

where F;=(2A,+t)wB is the magnetic flux enclosed by
the effective cross-sectional area of the junction, and A, is
the London penetration depth of the magnetic field into
the superconductor. The maximum supercurrent is then

sin(gF; /2#c)

3.41
qF; /2%ic ( :

Jmax=Jo

a pattern characteristic of the diffraction of optical waves
by a single slit. The modulation of the supercurrent by an
applied magnetic force was observed experimentally by
Rowell (1963). »

As pointed out in a review by Anderson (1967), while
the simple, one-slit pattern establishes the nature of the
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superconducting interference phenomenon quite adequate-
ly, much more beautiful and useful experiments can be
done with more complicated systems, in particular with
the two-junction interferometer of Jaklevic, Lambe, Mer-
cereau, and Silver (1964a,1964b,1965). The interferometer
is a device consisting of two Josephson junctions coupled
in parallel, as shown in Fig. 58. The current through the
junction pair is the algebraic sum of the currents through
each junction. As a result of the coherence of the super-
conducting state, it can be shown that the phase differ-
ences 8; and 8, across the two junctions are related by
82—8,=% [, Ads, (3.42)
where () is the loop crossing both junctions appearing in
Fig. 58. Then if a magnetic field is applied normal to the
plane of the junction pair, the maximum supercurrent
through the double junction, obtained by summing the
corresponding currents given by Eq. (3.40), has the form

sin(gF; /2#c)

oF, /2Fic (3.43)

| cos(gF 4 /2%c) | ,

Jmax=2J

where F, is the magnetic flux enclosed by the area of the
junction pair. Thus, in addition to the single-slit diffrac-
tion pattern, there is a modulation whose periodicity in
the maximum Josephson current is associated with a
change by 2wfic /q of the magnetic flux enclosed by the
junction pair. On the other hand, if the region of applied
magnetic field has no common points with the supercon-
ductor, the single-junction modulation disappears and the
maximum supercurrent is modulated only by the enclosed
magnetic flux,

Jmax=2J | cos(qF 4 /2%ic) | . (3.44)

In their experiment, Jaklevic, Lambe, Mercereau, and
Silver (1964a,1964b,1965) used tin—tin oxide—tin tunnel
junctions separated by a plastic insulator, as shown in Fig.
59. The maximum Josephson supercurrent was obtained
by the use of an ac averaging technique. First, Jaklevic
et al. measured the maximum Josephson current as a
function of the intensity of a uniform magnetic field ap-
plied to the long dimension of the substrate of the junc-
tion pair. The patterns obtained by Jaklevic et al.

(n (2)

fl—J& A

y/ =

FIG. 58. Superconducting quantum interference device consist-

ing of two Josephson junctions coupled in parallel, according to
Jaklevic, Lambe, Mercereau, and Silver (1965). Junctions 1 and
2 are connected by superconductors @ and b. These are separat-
ed by the thin oxide layer ¢, and form a loop enclosing the area
A. The current flow is measured between @ and b.

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

FIG. 59. Completed junction pair used by Jaklevic, Lambe,
Mercereau, and Silver (1965) to demonstrate the macroscopic
quantum interference in superconductors. A magnetic field B
could be applied to the long dimension of the substrate e. The
plastic insulator c is applied over the base tin film @, to mark
out the junctions f and separate a from the second tin film b.

(1964a,1965) showed both the diffraction and the interfer-
ence effects described by Eq. (3.43). In the case of the
pattern reproduced in Fig. 60, the junction separation was
w=3 mm and the junction width 0.5 mm, while the field
periodicity was 16 mG. From the field spacing between
interference peaks and the area A4 between the junctions,
the flux period was determined to be 2.3 10~7 Gcm?,
which in view of the reportedly large uncertainty in the
area A is in reasonable agreement with the theoretical
value Fy/2=2.07x10"7 Gcm? This result also con-
firms the fact that the charge of an electron pair is indeed
lq | =2e.

In'order to demonstrate the action of an enclosed mag-
netic flux on the interference pattern, Jaklevic et al.
(1964b,1965) constructed small solenoids by closely wind-
ing a fine insulated copper wire around a beryllium-
copper core, with the core providing the return path. The
tiny solenoid was introduced between the two junctions as
shown in Fig. 61. Since the diameter of the solenoid was
of the order of 100 um and its length about 1 cm, the
field external to the solenoid at the superconductor was
very small, reportedly less than 10~ of the field needed
to produce a shift by one fringe. The interference pattern
due to the enclosed magnetic flux observed by Jaklevic
et al. (1965) is reproduced in the lower part of Fig. 62, to-

JOSEPHSON CURRENT

MAGNETIC FIELD (mG)

FIG. 60. Maximum Josephson current as a function of the in-
tensity of an applied uniform magnetic field, as observed by
Jaklevic, Lambe, Mercereau, and Silver (1965). The envelope of
the pattern is determined by the single-junction diffraction ef-
fects, while the oscillations show the interference effects be-
tween the two junctions.
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FIG. 61. Cross section of a Josephson junction pair used by
Jaklevic et al. (1964b,1965) to demonstrate the action of an en-
closed magnetic flux on superconducting quantum interference
patterns. The thin oxide layer ¢ separates the tin films a and b.
Junctions 1 and 2 are connected in parallel by superconducting
links enclosing the solenoid 4 embedded in a plastic insulator e.
The current flow is measured between the films a and b.

gether with the pattern produced by a uniform magnetic
field, shown in the upper part of the figure. As predicted
by Eq. (3.44), the single-junction diffraction disappeared,
and there remained only the modulation due to the en-
closed magnetic flux. From the coil calibration and the
measured field period Jaklevic et al. (1965) obtained a
value for the flux unit of Fy/2=2.1X10"7 Gcm?, with
an error of 5%. The agreement between measured and
theoretical values of the flux unit consistently demon-
strated that the static leakage field from the solenoid was
indeed negligible. Moreover, to assure that the modula-
tion of the interference pattern was not due to the electro-
motive force arising when the flux was changed, Jaklevic
et al. (1965) also took interference data at fixed values of
the flux, the flux being changed only when the inter-
ferometer was warmed to the normal state. The modula-
tion of the maximum supercurrent was again observed,
thus demonstrating unequivocally the reality of the quan-
tum action of the enclosed fluxes.

UNIFORM
FIELD

ENCLOSED
FLUX

/

JOSEPHSON CURRENT

MAGNETIC FLUX

FIG. 62. Action of an enclosed magnetic flux on the maximum
Josephson current for a junction pair (lower trace), compared
with the action of a uniform magnetic field on the junction pair
(upper trace), as observed by Jaklevic, Lambe, Mercereau, and
Silver (1965). In the case of the enclosed flux the diffraction en-
velope disappears, and there remains only the periodic modula-
tion with the amount of enclosed magnetic flux. The slight
“beat” periodicity in both curves is reportedly due to a recorder
defect.
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F. Quantization of enclosed
electromagnetic fluxes

If a block of superconducting material is introduced
into a magnetic field, the electromotive forces generate
currents in the surface of the block, so that the magnetic
field cannot penetrate inside the superconductor. As
shown by Meissner and Ochsenfeld (1933), the magnetic
field vanishes inside the superconducting block even if the
applied field is established while the block has a normal
temperature, and is then cooled in the presence of the
field. However, if a ring at normal temperature, Fig.
63(a), is cooled below the critical point in the presence of
a magnetic field, the field is still expelled from the super-
conductor, but a certain amount of flux is now threading
the inner section of the ring, as shown in Fig. 63(b). If
the external field is removed, electromagnetic induction
cancels the supercurrent in the outer surface of the ring,
while the supercurrent in the inner surface remains un-
changed, so that a certain amount of magnetic flux is now
trapped by the ring, as shown in Fig. 63(c). The remark-

E
@) |

(b) )
©

FIG. 63. Trapping of a magnetic flux by a superconducting
ring, according to Feynman et al. (1965). (a) The ring, initially
at normal temperature, is cooled below the critical point in the
presence of an applied magnetic field. (b) The field is expelled
from the superconductor, while a certain amount of flux is still
threading through the inner section of the ring. (c) When the
applied field is removed, electromagnetic induction produces the
cancellation of the supercurrent in the outer surface of the ring,
while the persistent supercurrent in the inner surface gives rise
to the magnetic flux trapped by the ring.
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able aspect of this process is that if the width of the ring
is large compared to the penetration depth of the field
into the superconductor, the amount of trapped flux is
not arbitrary, but rather it is an integer multiple of
Fo/2=1tic /e.

The quantization in multiples of 27#ic /g of the mag-
netic flux trapped in a hollow superconductor in which
the current is carried by particles of charge g was predict-
ed by London (1948) on the basis of a phenomenological
description emphasizing the coherent of the particles in
the superconducting state. Thus if there exists an effec-
tive wave function ¢ for particles of charge g and mass M
which accounts for the superconducting state, the number
density of such particles will be ¥* and the current den-
sity

tqﬁ q° «

£ = (¢V¢ —y*Vy)— —CA¢¢ (3.45)

Now the phase of the wave function ¥ must increase by

an integer multiple of 27 with every rotation around the

hole along a loop lying within the superconductor, as

shown in Fig. 64. If we set ¥=(yy*)!%exp(i® /%), we
obtain from Eq. (3.45)

A, (3.46)

so that as explained above the quantity

F=¢ ‘ e +A]ds (3.47)

is an integer multiple of 27fic /q,

~N%, N=0,+1,....

London (1948) assumed that the charge g would be that
of a single electron. However, Onsager (1961) pointed out
that, due to the pairing of electrons in a superconductor,
q = —2e, so that the fluxoid, Eq. (3.47), is quantized in
integer multiples of 7#ic /e,

SUPERCONDUCTOR

FIG. 64. Quantization of the fluxoid in a hollow superconduc-
tor. If the effective wave function ¥ yields a number density
Yp* of particles in the superconducting state and a supercurrent
£, then due to the single valuedness of ¢ the fluxoid
F = (ﬁ (Mc £ /q*p* + A)ds is quantized in integer multiples
of 2mfic /q, where | g | =2e.
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=N”—fc—, N=0,%1,.... (3.48)
A phenomenological theory of superconductivity, which
incorporates the hypotheses leading to Eq. (3.48), was
developed by Ginzburg and Landau (1950). It was later
shown by Gor’kov (1959) that the Ginzburg-Landau
theory can be seen as an extension of the microscopic
theory of superconductivity of Bardeen, Cooper, and
Schrieffer (1957) in the vicinity of the transition tempera-
ture, provided that g and M are twice the charge and
mass of an electron. If the width of the ring is large com-
pared to the penetration depth of the magnetic field into
the superconductor, then it can be shown that the super-
current inside the superconductor is zero, so that the ex-
pression of the fluxoid becomes ¥ = ¢ Ads. In this
case, the magnetic flux trapped by the ring is necessarily
an integer multiple of the flux unit Fy/2=mfic /e.

The fact that the magnetic flux trapped by a hollow su-
perconducting cylinder is quantized in integer multiples
of mfic /e was confirmed experimentally by Deaver and
Fairbank (1961) and by Doll and Nabauer (1961,1962).
Deaver and Fairbank used a tin cylinder, cooled through
the superconducting transition in the presence of a known
applied axial magnetic field. The net flux F in the
cylinder was measured by moving the tin cylinder up and
down one hundred times per sec and observing the electri-
cal pickup in two small coils surrounding the ends of the
cylinder. The quantization unit found experimentally was
F,/2=1fic /e, with an error of 20%. The dependence of
the trapped flux on the intensity of the applied field ob-
served by Deaver and Fairbank is reproduced in Fig. 65.
Doll and Nabauer (1961,1962) measured the mechanical
torque exerted by a magnetic field on a small supercon-
ducting lead tube with frozen-in magnetic flux, and also
found quantization of the magnetic flux in integer multi-
ples of 7#ic /e. The dependence of the trapped flux on the
intensity of the applied field observed by Doll and
Nabauer is shown in Fig. 66.
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FIG. 65. Trapped flux in a superconducting hollow tin cylinder
as a function of the magnetic field in which the cylinder was
cooled below the superconducting transition temperature, as ob-
served by Deaver and Fairbank (1961): O, individual data
points; @, average value of all data at a particular value of the
field, including data that could not be plotted due to overlap-
ping of points.
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FIG. 66. Magnetic flux trapped in a superconducting lead tube
as a function of the longitudinal magnetic field in which the
tube was cooled below critical temperature, as observed by Doll
and Nabauer (1961). The ordinate is proportional to the
frozen-in flux.

In general, the penetration depth of the magnetic field
into the superconducting ring is very small compared to
the width of the ring and to its inner radius, so that the
region of the superconductor and the region of enclosed
flux have practically no common points. As emphasized
by Peshkin (1981a), the fact that the stationary states of
the superconductor are determined by the amount of inac-
cessible flux represents a bound-state analog of the
Aharonov-Bohm scattering effect. Unlike the conven-
tional electromagnetic effects, which depend on a finite
overlap between probability density and field strengths,
we have here another example of observable effects that
are determined by the coherence of the phase across a re-
gion of vanishing overlap between charged particles and
field strengths.

Recently it has been suggested that the electric flux
might also be quantized in multiples of w#ic /e (Post,
1982). As an example of quantization of the electric flux
let us consider the case of a superconducting cylinder
parallel to the z axis and moving in the x direction with a
certain velocity vg, as shown in Fig. 15(b). If the longitu-
dinal component of the magnetic field is B, there will ex-
ist inside the solenoid an electric field parallel to the y
axis, E =Bvy/c. The flux of this electric field through
the loop in the y,z plane connecting the points Q,.% of
Fig. 15(b) is given according to Eq. (1.78) by the integral
over the area of the loop,

Fg= [cEdyadr . (3.49)

As explained at the end of Sec. L.F, the integration in the
»,t plane can be transformed into an integration in the x,y
plane by the substitution dx =vydt. If the enclosed mag-
netic flux is quantized in multiples of 7#ic /e, then the
electric flux Fgz, Eq. (3.49), will also be an integer multi-
ple of mfic /e. It should be pointed out that the electric
flux defined in Eq. (3.49) is different from the conven-
tional concept of electric flux as the integral of the nor-
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Quantum effects of electromagnetic fluxes

mal component of the electric field over a surface in
three-dimensional space.

Another macroscopic effect of enclosed fluxes occurs in
the case of a charged particle whose motion is restricted
to a ring encircling the region of magnetic flux. From the
results derived in Sec. LE, we infer that the ground-state
energy of the charged particle is a periodic function of the
amount of enclosed flux, as shown in Fig. 67. Since the
kinetic energy of the pairs contributes to the free energy
of the superconducting phase, the free energy will also be
periodic in the flux (Byers and Yang, 1961; Brenig, 1961).
Now the superconducting transition occurs at a tempera-
ture such that the free energies of the superconducting
and normal phases should be equal. Since the free energy
of the normal phase is essentially independent of the mag-
netic flux, it turns out that the transition temperature is a
periodic function of the enclosed flux (Little and Parks,
1962; Parks and Little, 1964). The difference between the
free energies of the normal and superconducting phases
consists mainly in the ground-state kinetic energy of an
electron pair, so that the change in the critical tempera-
ture AT, produced by a flux F would be proportional to
2

el | (3.50)

N—ﬂ'ﬁc

AT, ~

where N is an integer. In order to observe this effect, Lit-
tle and Parks (1962) and Parks and Little (1964) measured
the transition temperature of thin-walled superconducting
hollow cylinders near the critical temperature as a func-
tion of the applied magnetic field in the axial direction.
The magnetic field at the sample was varied sinusoidally,
and the resulting variation in the resistance of the super-
conducting film was recorded, as shown in Fig. 68. From
the observed oscillations in the resistance it was possible
to determine the oscillations in the critical temperature.
A periodic transition temperature with a period of 7ic /e
in the magnetic flux was observed in all samples. Hence
Parks and Little (1964) determined the phase diagram for
a thin cylindrical superconductor in an axial magnetic

N2 | GROUND STATE
4MR3 | KINETIC ENERGY
T T ‘ T
-mwhc/e (o] whc/e 2mwhc/e

MAGNETIC FLUX

FIG. 67. Ground-state energy of an electron pair of charge
—2e and mass 2M, whose motion is restricted to a ring enclos-
ing a magnetic flux F. The energy is a periodic function of the
enclosed magnetic flux, with periodicity mfic /e.
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FIG. 68. Variation of the resistance of a hollow cylinder with
applied magnetic field at its transition temperature, as observed
by Parks and Little (1964). The upper trace is the magnetic
field sweep.

field, represented schematically in Fig. 69. This phase di-
agram demonstrates that the flux-dependent shift of criti-
cal temperature occurs not only for those sinusoidal fields
actually used in the experiments of Little and Parks, but
also for any static magnetic fluxes enclosed in the hollow
cylinder.

The periodicity of the quantum effects of the fluxes
was also observed by Kwiram and Deaver (1964), who
measured the flux change occurring in small, hollow tin
cylinders cooled through the transition temperature in an
applied magnetic field. The flux change occurring at the
superconducting transition in an applied magnetic field
was detected with a pickup coil wound closely around the
cylinder. The observed period, Fig. 70, corresponds to a
flux through the entire cross section of the cylinder of
2.0x 1077 Gcem?  Although in the Kwiram-Deaver ex-
periment there was field at the superconducting ring,
Willis (1971) reportedly obtained identical results in sub-
sequent experiments with long internal solenoids, when
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FIG. 69. Transition temperature of a thin hollow superconduc-
tor as a function of the enclosed magnetic flux, according to
Parks and Little (1964). The oscillatory edge of the supercon-
ducting phase is a consequence of the periodicity of the kinetic
energy of the electron pairs with the enclosed flux.
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FIG. 70. Flux change occurring in a hollow tin cylinder cooled
through the transition temperature in an applied magnetic field,
as observed by Kwiram and Deaver (1964). The ring always
chooses the available state of lowest energy, which is the one
with trapped flux differing from the applied flux by no more
than wfic /2e.

there was no field at the ring (Deaver and Donaldson,

'1982).

The magnetic flux trapped by superconducting hollow
cylinders has also been studied with the aid of electron in-
terferometers. Wahl (1968,1970) measured the amount of
enclosed flux as a function of the magnetic field applied
during cooling of the sample below the critical tempera-
ture, by observing the flux-dependent fringe shift in the
interference pattern. The trapped flux had in most cases
the values 0, 2.19x10~7 Gem?+6%, and 4.17x 1077
Gcem?+49%. Lischke (1969,1970a,1970b) and Boersch
and Lischke (1970) also studied quantized magnetic flux
in superconducting hollow cylinders with the aid of an
electron interferometer. They observed the inversion of
contrast shown in Figs. 71 and 72, corresponding to
amounts of enclosed flux that are odd multiplets of
wfic /e, and the conservation of the pattern corresponding
to flux changes by even multiples of #fic /e, Figs. 72 and

e

{ \5 s

FIG. 71. Electron interferometer fringes and densitometer
curves at the end of a superconducting hollow lead cylinder, as
observed by Lischke (1969). At the bottom of the figure no flux
is trapped and the phase shift is zero. At the upper part of the
figure the trapped flux is 7fic /e and the phase shift is 7, result-
ing in the inversion of contrast of the fringes.



412 Olariu and Popescu:

- N W o~

PE:
j APPLIED FIELD (G)

F
Thele L - =
H Pb
\ I e
v 40 60 80 100

| ‘ !
i R e HiH 076 pum

§§§ EEE %ni‘ ggi 034um
( . H f i ?u : i t T=6.4K

FIG. 72. Magnetic flux trapped in a hollow superconducting
cylinder as a function of magnetic field applied during cooling
of the sample, as observed by Boersch and Lischke (1970). Even
multiples of wfic /e leave the pattern invariant, while odd multi-
ples of 7#ic /e produce an inversion of contrast.

73. More recently, Mollenstedt, Schmidt, and Lichte
(1982) also observed the phase shift between electron
waves, due to a magnetic flux enclosed in a metallic
cylinder.

As emphasized by Keller and Zumino (1961), what is
always quantized in multiples of 7fic /e is not the magnet-
ic flux, but the fluxoid defined in Eq. (3.47). In fact, Bar-
deen (1961) has shown that in tubes of very small diame-
ter and with wall thickness of the order of the penetration
depth, the unit for quantization of the magnetic flux may
depend on dimensions and temperature and be smaller
than w#ic /e. The conservation of the fluxoid was investi-
gated by Hunt and Mercereau (1965). In their experi-
ments, a small amount of magnetic flux was trapped
while a metallic ring was cooled below its critical tem-
perature. The persistent current in the ring, which is pro-

portional to the trapped ﬂqx, was then measured as a
function of temperature, as the deflection angle of the

ring suspended on a quartz torsion fiber in a small

-

F=37hc/e

F=-3mhc/e

FIG. 73. Electron interference patterns produced by opposite
magnetic fluxes trapped in a superconducting cylinder, as ob-
served by Boersch and Lischke (1970). The pattern is invariant
to flux changes by an even multiple of 7ic /e.
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measuring magnetic field. As reported by Hunt and Mer-
cereau (1964), very thin films of tin showed a decrease in
the persistent current with increasing temperature and an
increase in the current with decreasing temperature,
which agrees with the dependence expected on the basis of
the fluxoid conservation. In these experiments, the quan-
tum numbers associated with the trapped flux and current
were very large, of the order of 10°—107. However, when
the trapped flux is of the order of ##c /e, Lischke (1970b)
reports some evidence suggesting that the magnetic flux
would still be quantized in multiples of 7#ic /e, even if the
film thickness of the superconductor were smaller than
the penetration depth.

The quantization of the fluxoid, Eq. (3.47), in multiples
of mfic /e is analogous to the quantization in multiples of
# of the canonical angular momentum of a charged parti-
cle interacting with a distribution of applied electromag-
netic fields, Eq. (1.120). The fact that the fluxoid coin-
cides with the magnetic flux in the particular case of a
hollow superconductor whose walls are thick compared to
the penetration depth is a direct consequence of the fact
that the current # is zero inside the superconductor.
However, the probability current Mv appearing in Eq.
(1.120), which is the analog of the supercurrent # in Eq.
(3.47), is not in general zero, as can be appreciated for ex-
ample by considering the problem of the rigid rotator dis-
cussed in Sec. I.LE. Consequently, the requirement that
the wave function be single valued does not imply quanti-
zation of the enclosed electromagnetic fluxes, as proposed
by Costa de Beauregard (1972) and Costa de Beauregard
and Vigoureux (1974,1982).

Even in the case of the thick-wall, multiply connected
superconductor, the effective wave function of the elec-
tron pairs depends not only on the magnetic flux but also
on the number of times the inaccessible region is encircled
(Schulman, 1971; Bernido and Inomata, 1980,1981; Berry,
1980; Gerry and Singh, 1982,1983). From the condition
of single valuedness of the effective wave function, ap-
plied for example to the double-loop superconductor
shown in Fig. 74, we infer that the magnetic flux trapped
by this structure would be quantized in multiples of
wfic /2e, and in general the magnetic flux trapped by an
N-turn superconducting loop would be a multiple of
wfic /Ne. The periodicity of mfic /2e of the magnetic flux
trapped by a superconducting path passing twice around a
single hole was observed experimentally by Henry and
Deaver (1968,1970; Henry, 1970). Experimental work on
the winding number dependence of the trapped magnetic
flux was recently reviewed by Deaver and Donaldson
(1982).

G. Quantum effects of electric fluxes

The electrostatic biprism described in Sec. IILA was
applied to electron-interferometric measurement of the
average inner potentials of the elements by Mollenstedt
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FIG. 74. Quantization of the magnetic flux for a superconduct-
ing path passing twice around a single hole [reproduced after
Deaver and Donaldson (1982)]. As observed experimentally by
Henry and Deaver (1968,1970), the magnetic flux trapped by
the double superconducting loop is quantized in multiples of
whic /2e.

R / FLUX

and Keller (1957), and further by Langbein (1958), Fert
and Faget (1958), Buhl (1959), and Keller (1961). The
average inner potential U, is the constant term of the
Fourier expansion of the scalar potential in the sample,
and can be obtained as the integral of the potential U due
to the atomic electrons and nuclear protons over the
volume of the sample (Bethe, 1928). In a first approxima-
tion, the sample acts on the incident electrons of charge
— e as a potential well of depth eUy>0. Then, if a thin
layer of the substance under investigation is crossed by
one of the coherent beams of a biprism interferometer, as
shown in Fig. 75, the potential U, can be determined
from the fringe shift produced in the interference pattern.

The thought experiment described in Sec. I.C demon-
strating the quantum action of the electric flux was based
on observation of the perturbation produced in the in-
terference pattern by a transient charge distribution, sam-
pled over very short intervals of time, which for a typical
electron interference experiment are less than 10710 sec.
As will be shown further in this section, the action of the
enclosed electric fluxes can, however, be demonstrated by
a comparison involving interference patterns correspond-
ing to stationary charge distributions, and we shall see
that the shift of the fringes produced by a thin foil is due
to the quantum action of the electric flux enclosed be-
tween the paths of the electrons from source to observing
plane.

Let us first analyze the effect of the thin foil shown in
Fig. 75 on the biprism interference pattern. According to
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FIG. 75. Electron-interferometric measurements of the inner
potential of a substance, according to Mollenstedt and Keller
(1957). A thin layer of the substance under investigation is
crossed by one of the coherent beams of the biprism interferom-
eter. The inner potential is then determined from the fringe
shift produced in the interference pattern.

the quasiclassical formalism developed in Sec. I, the am-
plitude for an electron emitted by the virtual source to ar-
rive in the observing plane is proportional to exp(iS /#),
where S is the classical action, Eq. (1.12), for the station-
ary path under consideration. If the scalar potential is
Uy > 0 inside the foil and zero outside, there is an electric
field acting normal to the surface of the foil, as shown in
Fig. 76. When the electron crosses the foil, the y com-
ponent of momentum is conserved, so that we have to
consider only the changes in the x component of momen-
tum. In the absence of the foil, the electron travels with a
velocity v <0 for a time 79= —cq/v from the source to
the observing plane. We determine the trajectory of the
electron crossing the foil and arriving in the observing
plane after the same interval 7 as a correction to the un-
perturbed uniform motion. Thus the x component of the
velocity inside the foil will be

«

Co erTO

R 51
while the velocity outside the sample is given by
c eUgDT
Vout = =0  tZorio (3.52)

7o Mc3
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FIG. 76. Electric field acting normal to the surface of a thin
foil of inner potential U, > 0, and thickness D.

The velocity slightly increases inside the foil and de-
creases outside with respect to the perturbed velocity, as
can be appreciated from the x,z diagram of the motion
shown in Fig. 77(a). The classical action of the problem
is

5= [(FMv*+ep)dr . (3.53)

It can be shown by substituting in Eq. (3.53) the velocity,
Egs. (3.51) and (3.52), that the contribution to the action
of the kinetic energy term is

t
_Tn
D/ v
N N\
~X Co (a)
t
Q
Up >0 E L lp/y
a5
u=0
y
Y (b)

FIG. 77. Trajectory of an electron emitted by the source, which
crosses a thin foil of thickness D and internal potential Uy > 0,
to arrive after a time interval 7, at the point Q in the observing
plane: (a) the x,r projection of the path. The dashed line
represents the unperturbed path. For fixed 7, the velocity of the
particle increases inside the foil and decreases outside with
respect to the unperturbed path, so that the contribution of the
kinetic energy to the classical action is the same on both paths.
(b) the y,t projection of the path. The phase of the wave com-
ponent crossing the foil is shifted with respect to the unper-
turbed component by an amount proportional to the enclosed

electric flux | cE,dydt. In the region of the dotted horizontal
strips, the electric field has an x component normal to the y,?
plane, which does not contribute to the enclosed flux.
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sMvdt=— R 3.54
f 2 v 2 To + C(Z) ( )
while the contribution of the potential becomes
erDTO
[epdr=—"""2 (3.55)
Co

where D is the thickness of the foil. Since in a typical ex-
periment we have Uy~10 V, 19=~10"2 sec, D /cq~10"8,
the second term in Eq. (3.54) is negligible with respect to
#. Consequently, the phase shift with respect to the un-
perturbed trajectory is given by

eUgtoD

5P ,
ﬁCO

(3.56)

and is due to the electric flux enclosed between the sta-
tionary paths, as shown in Fig. 77(b).

In the experiment described above the electron has been
acted upon by the x component of the electric field from
the surface of the foil. In order to show that the phase
shift in Eq. (3.56) is indeed due to the enclosed electric
flux, let us suppose that when the electron is inside the
sample we apply a potential ¢=—U, of the type
described in Sec. I.C, which does not give rise to supple-
mentary electric fields acting upon the electron. This
could be done, for example, by suppressing the surface
charge distribution after the electron penetrated inside the
foil, and reinstalling it before the electron left the foil, as
represented in Fig. 78(a). In the new situation, the elec-
tron crossing the sample is acted upon by exactly the
same fields as in the former case, but the potential in the
foil is zero as long as the electron is crossing it. This
means that the contribution given by Eq. (3.55) would
vanish, and consequently the new total phase shift would
be zero, as can be appreciated from Fig. 78(b). Thus the
phase shift, Eq. (3.56), cannot be attributed to the pres-
ence of the x component of the electric field acting in the
surface of the sample, and the observation of a shift of
the interference fringes is sufficient to establish the reality
of the quantum action of the enclosed electron flux.

Mollenstedt and Keller (1957) have actually used an
asymmetric carbon foil with different thicknesses D,,D,
on the two sides of the biprism fiber. The only difference
in the propagation of coherent electron waves arose from
the increase by (D, —D;)/v in time spent by one of the
beams in the region of the inner potential U,. According
to Eq. (3.56), this should have resulted in a phase shift by
eUyto(D, —Dy)/ficy of the relative phase of the interfer-
ing components. This phase shift would be proportional
to the flux of the electric field, Eq. (1.78), through a
space-time surface spanning the stationary paths connect-
ing the electron source to the observing plane. The shift
of the biprism interference fringes observed by
Mollenstedt and Keller (1957) is shown in Fig. 79. Simi-
lar fringe shifts due to the core potential of various ele-
ments have been further observed by Langbein (1958) for
carbon, Fert and Faget (1958) for carbon, Buhl (1959) for
gold, silver, aluminum, and zinc sulfur, and Keller (1961)



Olariu and Popescu: Quantum effects of electromagnetic fluxes 415

(a)

Y (b)

FIG. 78. Trajectory of an electron emitted by the source, which
arrives at the point Q in the observing plane after a time inter-
val 7o. It is assumed that after the electron penetrates inside the
foil the surface charge distribution is suppressed, and later rein-
stated before the electron leaves the foil. Thus the scalar poten-
tial is zero when the electron is inside the foil. (a) The x,¢ pro-
jection of the path is not affected by the transient change of the
charge distribution. (b) The y,t projection of the path, showing
that the enclosed electric flux is equal to zero.

for carbon, aluminum, copper, silver, and gold. It is re-
markable that although most of the work on the core po-
tential of the elements was accomplished before the 1959
paper of Aharonov and Bohm, while the considerations of
Ehrenberg and Siday (1949) were restricted to the quan-
tum effects of magnetic fluxes, the observed fringe shifts

FIG. 79. Phase shift by 7 produced by a thin carbon foil, as ob-
served by Mollenstedt and Keller (1957). The central horizontal
part of the pattern corresponds to a strip of carbon foil having
different thicknesses on the two sides of the biprism fiber, while
the upper and lower parts of the pattern correspond to strips of
carbon foil having the same thickness on both sides of the fiber.
The resulting fringe shift demonstrates the quantum effects of
electric fluxes.
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discussed in this section provide an experimental proof of
the quantum action of enclosed electric fluxes.

The contribution of the kinetic energy term, Eq. (3.54),
to the classical action is essentially the same for the per-
turbed and unperturbed electron paths shown in Fig.
77(a); this fact represents a particular case of a more gen-
eral situation. Thus let us consider the classical action for
a particle of charge g and mass M, on a stationary path
connecting the points r;,#; and ry,2;,

S=L?

where L, is the Lagrange function for the unperturbed
motion, and ¢,A are the electromagnetic potentials
describing the applied field distribution. For example, the
unperturbed Lagrange function in a biprism experiment
contains the kinetic energy term and the potential of the
fiber, while ¢ and A describe the electromagnetic fluxes.
Let us denote by ry(#) the unperturbed stationary paths,
and by

L0+%Av—qcp dt , (3.57)

r(t)=ry(t)+8r(t) (3.58)

the perturbed stationary paths connecting the fixed points
r;,t; and rr,tr. We determine the action on the perturbed
path by substituting in Eq. (3.57) the formal expression of
r(t), Eq. (3.58), and then developing L, in a series with
respect to 8r(¢z). Thus we have

oL, .
Lo(t,£)=Lo(to,fo)+ > (ro, £o)8r + 227
ar T
1{. 8 3 |’
+5 8rg +8r§i— L(rg,ro)+ -~ (3.59)

The contribution to the action of first-order terms in 8t
can be transformed with the aid of an integration by parts
into

tr | Lo L, . % |O0Ly 4 Lo
) or |dt= —_— ordt
ft,' aro T+ ai‘o T fll' ar() dt 81"0 r
oL t
I (3.60)
aro Y

This contribution is equal to zero, because the Lagrange
equations are fulfilled on the stationary path ry(z), and
moreover the end points are fixed so that &r(z;)=0 and
8r(z5)=0. Now the path correction contains terms that
are at least proportional to the applied fields. The contri-
bution of the term L to the action, obtained by integra-
tion along the perturbed path is equal to the contribution
of L, obtained by integration along the unperturbed path,
up to quadratic terms in the applied field. Since the area
of the surface spanning the perturbed and unperturbed
paths is of the order of 8r, the integral

t
ft'f(qu/c —q)dt

also has the same value for perturbed and unperturbed
paths, up -to quadratic terms in the applied fields. We
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conclude that the shift 8S of the action of a particle mov-
ing on a stationary trajectory between the fixed points
r;,t; and r1p,tp, produced by the distribution of elec-
tromagnetic potentials @A, is equal, up to quadratic
terms in the applied fields, to the integral of the potentials
along the unperturbed stationary path connecting the
points 1;,%; and 1,15,

8s=4 [ _ (Adr—gecdr). (3.61)
In the case of a two-slit interference experiment, the point
r;,t; would correspond to the source of electrons and
Is,tr to a given point in the observing plane; moreover,
there would be two stationary paths connecting r;,t; and
1s,tr. Then the relative shift of the classical action corre-
sponding to these paths would be given by the elec-
tromagnetic flux enclosed in the loop formed by the un-
perturbed stationary paths,

8S1—652=%g5(c¢)dt—Adr). (3.62)

The field strengths acting in the region of the stationary
paths and the electromagnetic flux enclosed between these
paths are independent quantities, in the sense that we can
alter the amount of enclosed flux while conserving the
fields acting in the vicinity of the paths. Thus Eq. (3.62)
means that any shift of the interference fringes observed
at a fixed point in the observing plane, which depends
linearly on the applied intensities, constitutes a manifesta-
tion of the quantum action of the electromagnetic flux en-
closed between the stationary paths. The shifts produced
by uniform field distributions, discussed in Sec. IIL.B, and
the shifts produced by the inner potential of thin foils,
discussed in the present section, are in this category, and
another example will be considered in the next section.

A consequence of the fact that the relative phase shift
observed at a fixed point in the observing plane is propor-
tional to the enclosed flux is that an alternating flux
which produces a shift of the order of 7 or larger will
destroy the interference pattern. This fact was verified by
Chambers (1960) and by Schaal, Jonsson, and Krimmel
(1966). It is interesting to consider in this context the ef-
fect on the interference pattern of uniform distributions
of electric or magnetic fields acting along the entire path
of the particle from source to observing plane. In the case
of the interference of particles of charge g coherently
emitted by two virtual sources .¥; and %, an electric
field E applied as shown in Fig. 80(a) shifts the envelope
of the pattern by &g =gqgEc}/2Mv*. According to Eq.
(3.62), the electric field will shift the relative phase at a
point Q in the observing region with respect to the rela-
tive phase at Q in the absence of the field by gEacy/2%v.
However, since the distance between consecutive fringes is
fo=2mrfico/Mav, the difference between relative phases at
the points Q¢ and Q shown in Fig. 80(a) is equal to
2w8g /fo=qEacy/2%v. Thus the relative phase at the
point Q in the presence of the electric field is equal to the
relative phase at the point Q in the absence of the field,
i.e., the interference pattern is shifted by the uniform elec-
tric field as a whole.
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FIG. 80. (a) Action of a uniform electric field E, and (b) action
of a uniform magnetic field B on a two-slit interference pattern.
The shift of relative phase produced by the enclosed electromag-
netic flux at the point Q is compensated for by the displacement
of the observing point from Qo to Q, so that the position of the
fringes relative to the envelope of the pattern is not affected by
the applied fields.

A similar conclusion can be reached in the case of a
uniform magnetic field B acting on the interfering parti-
cles along their entire path, as shown in Fig. 80(b). In
this case the envelope is displaced by 8z =gBc3/2Muc.
According to Eq. (3.62), the magnetic field will shift the
relative phase of the two beams by gBcpa /2%ic. In the
same time, the difference between the relative phases at
the points Qg and Q is 278z /fo=¢qBcoa /2%c. In this
case, too, the relative phase at the point Q in the presence
of the magnetic field is equal to the relative phase at the
point Q, in the absence of the field, so that the position
of the fringes with respect to the envelope is not affected
by the applied magnetic field. The same conclusion was
reached in Sec. I.B for electric and magnetic fields acting
over regions having the form of strips crossed by the
coherent beams.

The fact that the flux-dependent phase shift is compen-
sated for by the displacement of the observing point was
pointed out by Werner and Brill (1960). This compensat-
ing mechanism does not, however, lead to stability of the
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interference pattern for alternative electromagnetic fluxes,
as suggested by Werner and Brill (1960), but, on the con-
trary, the resulting overall displacement of the fringe sys-
tem completely destroys the pattern for amplitudes of the
enclosed flux larger than 7. A detailed analysis of the
problem of alternating fluxes, and its relevance for the
electron interference experiment of Marton, Simpson, and
Suddeth (1954), which reportedly was performed in the
presence of stray 60-cycle magnetic fields, can be found in
the review article by Greenberger and Overhauser (1979).

H. Effects of gravitational flux
on the quantum interference
of neutrons

Since the Hamiltonian of a particle of mass M moving
in the Earth’s gravitational field g is analogous to the
Hamiltonian of a particle of charge g interacting with a
uniform electric field E, the relative phase of two in-
terfering beams could be shifted not only by the enclosed
electric flux, but also by an enclosed gravitational flux.
The possibility of an experimental test of gravitational ef-
fects in the quantum interference of neutrons was first
suggested by Overhauser and Colella (1974), in the con-
text of the successful construction of a neutron inter-
ferometer by Rauch, Treimer, and Bonse (1974). The
predicted existence of a fringe shift due to the Earth’s
gravitational flux enclosed between two coherent neutron
beams at different heights was experimentally confirmed
by Colella, Overhauser, and Werner (1975) with the aid of
an interferometer cut from a dislocation-free silicon crys-
tal. The positive outcome of this experiment demon-
strates that the concept of flux is relevant in the case of
gravitational interaction, too.

The neutron interferometer used by Colella,
Overhauser, and Werner (1975), shown schematically in
Fig. 81, is analogous to the Mach interferometer for opti-
cal frequencies. An incident neutron beam is split by the
first crystal slab into the transmitted and reflected beams
AB and AC. These beams are further split by the second
crystal slab, and the resulting components CD and BD are
once more diffracted by the third slab, as shown in Fig.
81. In order to evaluate the effects of these successive
splittings on the neutron beam, let us first consider the
problem of a neutron beam incident on a cubic crystal, as
shown in Fig. 82. If the scattering planes are perpendicu-

lar to the face of the crystal, the incident wave
by = e T (3.63)

is split inside the crystal into two standing waves along
the y direction,

b=
where
ik
PP =e' §§cosk,,17 , (3.64a)

and
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FIG. 81. Neutron interferometer cut from a dislocation-free sil-
icon crystal, used by Colella, Overhauser, and Werner (1975) to
observe the fringe shift due to the earth’s gravitational flux en-
closed between the coherent beams ABD and ACD. High-
pressure *He detectors were used to monitor the beams C;, C,,
and C;. The interferometer could be rotated by an angle ®
about the incident direction, thereby altering the amount of
gravitational flux enclosed between the beams. The dimensions
were d=3.5 cm and a=2 mm.

M —ie™sink, 7 . (3.64b)
It can be shown that the wave number k,, is related to the
lattice constant a, by |k, | =m/a,, which represents the
Bragg condition for getting a scattered wave. A justifica-
tion of this relation, as well as a more detailed analysis of
the propagation of neutrons through a thick crystal, can
be found in the article of Greenberger and Overhauser
(1979). The standing wave ¥’ is centered at the atomic
sites, where we have assumed that the atoms are located
at n=~Na,, N =0,%1,..., and as this wave is propaga-
ting in the & direction, it interacts relatively strongly with
the crystal. On the other hand, the standing wave ¥}’ is
centered between the atoms, and it can traverse the crystal
relatively undisturbed. Consequently, when the beam
reaches the opposite face of the crystal, it will have the
form

(1) iB,(2)
¢n :¢n +be’B¢n >
where the constants b and 3 depend on the substances and
thickness of the crystal. In most experiments on neutron
interference the absorption of neutrons can be neglected,

so that we shall assume that b =1. Then the wave, Eq.
(3.65), becomes

(3.65)

Yu=7(1 FeiB)e e 5(1 _eiB)e*EE R
(3.66)

The first term in Eq. (3.66) represents the transmitted
wave, whose amplitude is proportional to cos(f3/2), and
the second term gives the reflected wave, whose amplitude
is proportional to sin(3/2). The total intensity emerging
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FIG. 82. Incident neutron beam scattered by a plane perpendic-
ular to the crystal face. The incident wave is split inside the
crystal into two standing waves in the y direction, 1, which is
centered between the atoms, and ,, which is centered at the
atomic sites. These waves are propagating inside the crystal in
a direction normal to the face of the crystal. When these beams
reach the opposite face of the crystal, they give rise to the
transmitted and reflected waves.

from the crystal is equal to cos*(3/2)+sin?(3/2)=1, the
incident intensity.

Let us now consider the unperturbed interference of
neutrons, in a region where the gravitational field is zero.
The successive application of Eq. (3.66) for the first and
second crystal slab shown in Fig. 81 yields the amplitudes
of the beams CD and BD incident on the third slab as
—sin®(B/2)exp(in) and —isin(B/2)cos(B/2)expliv),
respectively. A further application of Eq. (3.66) finally
yields the intensities of beams 2 and 3 as

I,= sin6g + sin“f—cos"g
— sin3§cosgsin[3’ cos(p—v) , (3.67a)
I,=2 sin4—/23—cos2~2~ +sin3gcos—§sinﬁ cos(uw—v) .
(3.67b)

We see that the sum I,-+1; is independent of the phase
difference u —v, while I, —I; has the form
2B

I,—1I, :sinzz—coszb’—sin ?sinzﬁ cos(u—v) .

(3.68)

If the neutron interferometer is oriented in a gravita-
tional field g which makes an angle ® with the normal to
the plane ABCD (see Fig. 81), it can be shown that in a
first-order approximation the relative phases of the beams
arriving at the counters C, and Cj; are not affected by the
bending of the paths, produced by the gravitational field
(Overhauser and Colella, 1974). There will, however, be a
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phase shift arising from the difference in the gravitational
potential of the regions traversed by the upper and lower
beams. This phase shift is given by the integral
(M / ﬁ)gsfpgdt over the loop ABCD, where @, is the gravi-
tational potential,

<pg=——gr .

By taking into account the fact that the velocity of the
neutrons inside the crystal is v cos@ when their velocity in
the free space is v, it can be shown that the gravitational
phase shift 8, is given by (Greenberger and Overhauser,
1979)

5 — 2Mg sin®d?

. o (3.69)

a
tand [1+— | .
an [ + d }
If the interferometer is symmetric, then the phase differ-
ence in Eq. (3.68) is entirely of gravitational origin,
u—v=28g, and the expression of the intensity I, —1I3 be-
comes

I, —Iy=./ — % cosdy , (3.70)

where .7 =sin%(8/2)cos’B and % =sin*(3/2)sin’B. The
gravitational phase difference 8; can be altered by rotat-
ing the interferometer about the incidence direction by an
angle ®. In the experiment of Colella, Overhauser, and
Werner (1975), the neutron wavelength was A=1.44 ‘&,
the Bragg angle 6=22.1°, the dimensions a =0.2 cm, and
d=3.5 cm, so that a rotation of the interferometer by
180° would produce, according to Egs. (3.69) and (3.70), a
shift of about 19 fringes.

The existence of the gravitationally dependent fringe
shift, Eq. (3.69), was confirmed by Colella, Overhauser,
and Werner (1975), who measured the difference count
I, —1I; as a function of the interferometer rotation angle
@, as shown in Fig. 83. In accordance with Eq. (3.70), the
pattern of I, —1I; has a minimum when the interference
plane ABCD is normal to the gravitational field. This ex-
periment demonstrates that the enclosed gravitational flux
does affect the relative phase of two coherent massive
beams, the existence of the fringe shift being in principle
independent of the presence of field strengths acting in
the vicinity of the stationary paths.

An interference experiment testing the existence of an
electromagnetic Aharonov-Bohm effect for neutrons was
performed by Greenberger, Atwood, Arthur, Shull, and
Schlenker (1981), -and no measurable phase shift was
found upon reversal of an enclosed magnetic flux. This
confirms the fact that for a neutral particle there is no
direct coupling to the electromagnetic flux.

Another possible source of enclosed flux is the Dirac
string. However, Goddard and Olive (1978) have pointed
out that as a result of Dirac’s quantization condition, the

" magnetic flux gives rise to no observable Aharonov-Bohm

effect. An exact solution of the Schrodinger equation in
Aharonov-Bohm and Dirac monopole potentials has been
reported by Roy and Singh (1983).

Conservation of isotopic spin suggests, although it does
not require, the eventual existence of an isotopic spin
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FIG. 83. Difference in neutron count I, —I; as a function of
the interferometer rotation angle ®, as observed by Colella,
Greenberger, and Overhauser (1975). The intensities of the
beams I, and I; are measured at fixed points in the observing
region; the interference extremes observed at various inter-
ferometer rotation angles are due to modification of the gravita-
tional flux enclosed by the stationary paths of the neutron inter-
ferometer.

gauge field. Wisnivesky and Aharonov (1967) and Wu
and Yang (1975) have considered an interference experi-
ment that would test the reality of this gauge field. How-
ever, the conditions necessary to perform the experiment
are rather restrictive.

Finally, the existence of an Aharonov-Bohm effect for
more general solutions of the gravitational field equations
has been discussed by Wisnivesky and Aharonov (1967),
Dowker (1967), Papini (1967), Krauss (1968), Anandan
(1977,1979), and Ford and Vilenkin (1981).

IV. PHYSICAL SIGNIFICANCE

A. Concept of the nonintegrable phase
factor in electromagnetism

The forces with which two charged particles interact
are not in general equal and opposite, and therefore the
momentum and energy of the individual particles are not
conserved. Moreover, in a theory of electromagnetism
based exclusively on the kinematical state of the charged
particles, the interactions are distant in space and remote
in time. A local, conservative picture of the electromag-
netic effects, however, becomes possible if we ascribe a
certain amount of momentum and energy to the elec-
tromagnetic field that fills the region of space between the
charged particles. The properties of this electromagnetic
continuum can be studied by observing its action on test
charged particles. Its effects on a massive particle, with
predominantly classical evolution, are determined by the
force F acting on the test particle. By separating out the
velocity-dependent part of the force, we are able to
characterize the electromagnetic field completely by the
electric and magnetic field strengths E and B,
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F:qE+—z—v><B . (4.1)
The field strengths E and B are in turn generated by the
distributions of charge and current throughout the space.
Maxwell’s equations for the electromagnetic field are
often solved conveniently in terms of the electromagnetic
potentials ¢, A,

10A

E=—Ve— ¢ ot

, (4.2a)

B=VXA. (4.2b)

While a distribution of potentials uniquely specifies the
field strengths E,B, a given distribution of electromagnet-
ic fields can be described by infinitely many choices of the
potentials @, A, which differ by the derivatives of an arbi-
trary function of position and time,

o LOf
=@ o o’ (4.3a)
A'=A+Vf. (4.3b)

Due to the arbitrariness of the gauge function f, we must
conclude that the potentials have no physical significance
at the classical level of description of the interaction.

If the quantum-classical properties of the test particle
are significant, the equations of motion based on the
Lorentz force must be replaced by the Schrodinger equa-
tion for the wave function W of the test particle,

oV __ # . igh iqfi

0¥ A N LT
ifi Y M v+ Me AVVY + 2]wcdlvA\If

2
q9 2
+ AV +qoV¥ . 4.4)
2Mc? A
Since the electromagnetic potential enter explicitly in the
Schrddinger equation (4.4), the possibility that the poten-
tials possess a certain degree of physical relevance cannot
be excluded a priori. However, it can be checked by a
direct calculation that a change in the gauge of the poten-
tials, Egs. (4.3), is accompanied by a phase transformation
of the wave function,
' iqf
V'=Wexp |-~ |, 4.5
EXP | e (4.5)

which leaves invariant the probability distribution and the
energy and momentum distributions of the particle.
Since, even in quantum mechanics, energy and momen-
tum effects depend on the direct action of the field
strengths on the charged particle, it was thought that the
primary quantities describing the electromagnetic contin-
uum were still the electric and magnetic field strengths E
and B, while no physical significance could be attributed
to the electromagnetic potentials.

Electromagnetic effects with a classical analog are ob-
servable to the extent that there is a nonvanishing overlap
between the probability distribution of the charged parti-
cle and the applied field strengths. The remakable thing
about the quantum effects described by Ehrenberg and Si-
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day (1949) and by Aharonov and Bohm (1959) is that the
effects of the electromagnetic fluxes remain observable
even when the overlap between the probability distribu-
tion WW* and the field strengths E and B is rendered ar-
bitrarily small. The reality of these effects means that a
knowledge of the field strengths in regions where the
probability WW* has finite values is not in general suffi-
cient to determine completely the evolution of the
quantum-mechanical state of a charged particle. While
the phase of the wave function is finite, even in the region
of the enclosed fluxes where the probability distribution
eventually becomes very small, the concept of local action
of the field strengths, as generally understood, refers to
the overlap between the probability WW* and the field
strengths, and not to the overlap between the phase of the
wave function and the field strengths. Since the state of a
charged particle can be influenced by electric and magnet-
ic fluxes in regions where the particle never passed, we
conclude that a picture of electromagnetism based on the
local action of the field strengths is not possible in quan-
tum mechanics.

The previous considerations raise the question of what
constitutes an intrinsic and complete description of elec-
tromagnetism. The Aharonov-Bohm experiment shows
that in a multiply connected region where the field
strengths are zero, the observable electromagnetic effects
depend periodically on the integral

q _
” P cpdt—Adr) (4.6)

around an - unshrinkable loop. An examination of the
Aharonov-Bohm experiment led Yang (1974) and Wu and
Yang (1975) to the conclusion that the physically mean-
ingful quantity characterizing the electromagnetic in-
teraction in quantum mechanics is the phase factor

R=exp | L Plepdi—Adn) |, 4.7)

which can be taken as the basis of a description of elec-
tromagnetism. According to Egs. (1.77) and (1.78), the
integral gﬁ(ccp dt— A dr) is equal to the electromagnetic
flux through the closed loop, so that the quantity R in
Eq. (4.7) may be termed the reduced electromagnetic flux.
In a simply connected region of space, specifying the re-
duced flux is equivalent to knowing the field strengths in
that region. However, in a multiply connected space the
specification of the nonintegrable phase factor, Eq. (4.7),
for loops on the boundary of the accessible region is not
sufficient to determine the distribution of electric and
magnetic fields in the inaccessible region. The gauge-
independent quantity R, Eq. (4.7), does not determine the
electromagnetic potentials in the accessible region either.
Thus the degree of detail provided in the accessible region
by the nonintegrable phase factor is intermediate between
that provided by the field strengths, which underdeter-
mine the state of the electromagnetic continuum in that
region, and that provided by the potentials, which over-
describe it.
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As pointed out by Wu and Yang (1975), it is convenient
to consider the concept of a phase factor for any path
connecting two points P and Q,

RPQ =€eXp (4.8)

iq (2
%"f}, (copdt — Adr)

The evolution of the state of a charged particle in terms
of the phase factor, Eq. (4.8), is then described by the
path-integral formalism discussed in Sec. I.LA. The ex-
pression of the propagator, Eq. (1.13), can be readily
transformed into

YDr(7), (4.9)

K(Q,P)~ [ Ropexp %SO(Q,P)

where Rpg is the phase factor defined in Eq. (4.8), and
Qo
So(Q,P)= [ s MVt (4.10)

is the unperturbed classical action between P and Q. The
form of the propagator, Eq. (4.9), demonstrates that elec-
tromagnetic effects in quantum mechanics do indeed de-
pend periodically on path integrals of the potentials. The
nonintegrable phase factor also depends on the charge ¢
of the particle and on the number of turns of a given path
around the enclosed flux. Therefore the quantity R is not
a pure field variable, but rather describes the dynamical
interaction between the particle and the flux.

In the idealized case of a multiconnected space, where
the separation between the accessible region and the en-
closed fluxes is rigorous, the observable effects are period-
ic functions of the amount of enclosed flux. On the other
hand, a certain degree of penetration of the particle into
the region of the field strengths results in small correc-
tions to the wave function, depending on the detailed field
distribution in the shielded region. The essence of the
quantum effects of enclosed fluxes is, however, the per-
sistence of finite observable effects in the limit when
direct contact between the incident particles and the field
strengths becomes vanishingly small, a circumstance em-
phasized by Greenberger (1981).

B. Action of the nonintegrable phase factor

on the parity of charged particles

A major consequence of the observation of quantum ef-
fects of the fluxes by Ehrenberg and Siday (1949) and
Aharonov and Bohm (1959) is that we now realize that a
knowledge of the field strengths in restricted regions of
space is not sufficient to completely determine elec-
tromagnetic effects in quantum mechanics. An examina-
tion of the Aharonov-Bohm experiment led Wu and Yang
(1975) to the conclusion that electromagnetism is the
gauge-invariant manifestation of the nonintegrable phase
factor

R =exp %f(c:pdt—Adr)
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While the field strengths do produce changes in the ener-
gy and momentum of the charged particles, such effects
are primarily independent of the enclosed electromagnetic
flux. In an attempt to identify the kinematical quantity
whose average should be directly influenced by the en-
closed flux, we consider in this section the gauge-
independent, space-time property

_ [+ iq ¢ 3
I= [ W*(QW(Q, Jexp - fQ+Ads d’Q, 411

where the points Q =(r,¢) and Q , =(r,?) are /symmetric
with respect to an arbitrary plane II; this generalizes the
concept of parity of a square-integrable state ¥ with
respect to the plane II for the case of a nonvanishing dis-
tribution of electromagnetic fields. We show that the
quantity I can be expressed as an average of the nonin-
tegrable phase factor, Eq. (4.8), over all paths PQQ . T
connecting the points P,T in the incidence region, at the
initial time #(, to the points Q,Q, in the region where I
is being observed at the time ¢. In the case of scattering
by an infinite magnetic string carrying the flux F, we find
that the parity of a state that was symmetric in the in-
cidence region becomes approximately cos(eF /#ic) in the
observing region behind the string. The measurement of
the parity of a free state is briefly discussed.

The fact that electromagnetic effects in quantum
mechanics depend on path integrals of the potentials be-
comes apparent if we express the wave function at the
time ¢ in terms of the wave function at a previous time ?,
with the aid of a propagator K,

¥(Q)= [K(Q,P)¥(P)d*P , (4.12)

where P and Q denote the space and time coordinates,
P =(ry,tg) and Q =(r,t). According to Eq. (4.9), the
propagator K (Q,P) is proportional to the exponential of
the classical action multiplied by i /%, summed over all
paths r(7) connecting the points P and Q. The dominant
contribution to the state arises from those paths for which
the total classical action in the expression of the propaga-
tor is stationary. If for the situation under consideration
there is a single stationary path connecting the points P
and Q in the incidence and observing regions, respective-
ly, then the final state is essentially determined by the
field strengths. On the other hand, in cases where there
are several stationary paths connecting the points P and
Q, a knowledge of the field strengths in the vicinity of
these paths becomes insufficient, and a description of the
process of interaction must be supplemented by the speci-
fication of the nonintegrable phase factor R correspond-
ing to the loops formed by pairs of such stationary paths.

Now in a field-free region of the space, the parity I, of
a state W with respect to a certain plane II is the average
value of the operator /I\O defined as

ToW(Q)=¥(Q.,),

where the points Q =(r,?) and Q, =(r_,t) are symmetri-
cal with respect to the plane II. The parity
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To=(W|Tow) , 4.13)

which takes values in the range —1—1, can also be writ-
ten as

Io=[p(Qp(Q. Jexp

where the integration in the exponential is performed on
the straight line connecting the points Q,Q , , and

W(Q)=p(Qexp[i®(Q)] .

While Eq. (4.13) is applicable only in field-free regions of
space, a gauge-invariant expression of the parity can be
obtained by replacing V® in Eq. (4.14) by the kinetic
momentum

Qo
if, +V<I>ds]d3Q , (414

Mv=ﬁV<I>—%A.

Thus, in the presence of an arbitrary distribution of elec-
tromagnetic fields, the parity of the state W with respect
to the plane II is given by

d’o,

N . Q
I =p(Q)p(Q Jexp éfg "Mvds

which is equivalent to Eq. (4.11).

The parity of the state W(Q) can be obtained from the
initial wave function and the electromagnetic field distri-
bution by substituting in Eq. (4.11) the expression for the
state ¥(Q), Egs. (4.12) and (4.9),

I=[Rpgp rexp{(i/BSo(Q.1,T)—So(Q,P)]}
X W*(P)W( T)-@rpQ(T)gl'TQ+(T)d3Pd3Td3Q ,
4.15)

where RPQQ+T is the nonintegrable phase factor, Eq.

(4.8), corresponding to the path PQQ_, T shown in Fig.
84, and P and T are points in the incidence region, at the
time 7y,. The integrals are convergent provided that the
state at the time #, is represented by a square-integrable
wave function. If the spatial dimensions of the region of
the field strengths are finite, and if the state at the time ¢,
is assumed to be in a field-free region, then the potentials
are vanishing in that region, and the integral appearing in
the phase factor R, Eq. (4.14), can be completed by the
path PT without changing its value. While any asym-
metry in the electromagnetic fields would in principle

" modify the parity of the state of the particle onto which

they are acting, the remarkable property of Eq. (4.15) is
related to the form taken by the parity effects of the elec-
tromagnetic fields, namely that it represents an average of
the nonintegrable phase factor, Eq. (4.7), over all paths
connecting the field-free incidence region to the region
where I is being observed. Thus Eq. (4.15) shows that the
nonintegrable phase factor acts as a source of parity
changes, analogously to the way in which the force is a
source of momentum changes.

We have assumed thus far that the electromagnetic po-
tentials are given functions of space and time. If the
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FIG. 84. Parity of the final state with respect to the plane II,
evaluated with the path-integral formalism. The parity of the
final state is an average of the nonintegral phase factor
R PoQ , TP> for all positions of the points P,T in the field-free in-
cidence region and Q in the observing region, where the posi-
tions of the points Q and Q. are symmetrical with respect to
the plane IT.

sources of the electromagnetic fields were included in the
analysis, then the parity of the whole system would be
conserved during the interaction. This means that not
only would the parity of the incident particle be affected
by interaction with the enclosed fluxes, but the passage of
the incident particle would also change the state of parity
of the particles in the source. The parity of the state of
the charged particles in a source of enclosed flux is in
general zero, so that the conservation of the total parity in
such cases bears no special significance.

As an example, let us consider Aharonov-Bohm
scattering by an infinite magnetic string. In its conven-
tional realization, Aharonov-Bohm scattering takes place
in a two-slit interference experiment modified by the pres-
ence, in the inaccessible region between the slits, of a cer-
tain amount of magnetic flux, as shown in Fig. 85. In the
absence of the flux the components ¥’ and 9>’ of the in-
cident state

(1), 1(2)
Y=+

give rise, respectively, to the components 1/1}” and gb}” of
the final state

V=19 +y7 . 4.17)

The presence of the magnetic flux F shifts the phase of
the coherent components by +gF /2#c, so that the expres-
sion of the flux-dependent state in the observing region
becomes

(4.16)
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FIG. 85. Aharonov-Bohm scattering by a magnetic flux. In the
absence of the flux the symmetric components {"’ and ¢{* of
the incident state evolve, respectively, into the final components
gb(f” and w}z’. The presence of the magnetic flux F shifts the
phases of these components by +gF /2#c, thereby changing the
parity of the state of the particle with respect to the plane II by
a factor of cos(gF /#ic).

@f_:lp-(fl)e»—in/Zﬁc_*_d}}Z)ein/Zﬁc . (4.18)
The symmetry plane for the unperturbed scattering is per-
pendicular to the plane of the slits, and the intersection of
these planes coincides with the z axis, situated midway
between the two parallel slits. Let us choose as plane IT
the symmetry plane defined above, and assume for sim-
plicity that the components #" and ¥{*) are two wave
packets, symmetric with respect to Il, and orthogonal be-
cause of their different localization. Then, since the un-
perturbed Hamiltonian commutes with the operator fo
for the aforementioned choice of plane Il, the parity I is
conserved during flux-free scattering by the two parallel
slits,

<¢flf0¢f>=<¢i|f0¢i> . (4.19)

However, the parity will no longer be conserved in the
presence of the magnetic flux, and it can be shown that
the parity in the observing region has approximately the
form

By | Top ) =ty | To; Ycos(gF /#ic) ,

which, as discussed in Sec. II.B, is correct up to terms ex-
ponentially small in the square of the ratio of the separa-
tion between the coherent packets to their widths. Thus
the parity of the final state, Eq. (4.18), is a periodic func-
tion of the amount of enclosed flux F, and in particular, a

(4.20)
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flux of the w#ic /g transforms an even state into an odd
state, and conversely. It can be shown also that in the
case of scattering of a plane wave by a magnetic string,
the parity of the final state depends on the enclosed mag-
netic flux F in a manner similar to that in Eq. (4.20).

The parity of a free state can be measured, for example,
with the setup shown in Fig. 86. The observed state is
split in two coherent components, one of which is subject
to an inversion produced by the cylindrical lens L. The
beams are then recombined, and the resulting intensities
are monitored by the counters C; and C,, situated at
twice the focal distance from the lens L. By a suitable
calibration of the beam splitters it can be arranged that
the wave functions at the two counters C; and C, be,
respectively, Oy 5 o¥, and iy oY, so that the difference
between the two signals is proportional to the parity of
the state with respect to the plane II,

Ci—Cy~{W|Tow) .

If the observed state were the superposition of wave pack-
ets described in Eq. (4.18), the parity of that state would
depend on the flux F, although the probability distribu-
tion of the state ¥ ¢ is practically independent of F.

The meaning of angular momentum for systems com-
posed of magnetic sources and electric charges, as well as
the nature of phases that affect the statistics of indistin-
guishable objects, was recently discussed by Goldhaber
(1982). Goldhaber (1982) and Wilczek (1982b) have
pointed out that such composites have unusual statistics,
interpolating continuously between bosons and fermions.
Silverman (1983) remarked that if a charged spinless bo-
son orbiting a solenoid were to be observed behaving
under rotations like a fermion, that would be equivalent
to the quantization of the canonical angular momentum
in integer multiples of #. ’ ’

While the average value of any observable quantity can

cole-igl’
L: C1"'I\1/"Tu\[‘l2
-V

FIG. 86. Measurement of the parity I, of a free state. The ob-
~served state is split into two coherent components, one of which
is subject to an inversion produced by the cylindrical lens L.
‘The beams are then recombined and the resulting intensities are
monitored by the counters C; and C,, situated at twice the fo-
cal distance from the lens L. It can be arranged that the wave
functions in the region of the counters be W+7,¥, so that the
difference of the two signals is proportional to the parity of the

state ¥ with respect to the plane I, C; —C, ~{(W¥ | T,¥).
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in principle be expressed in terms of path integrals of the
potentials, the average kinetic energy and momentum are
not affected by enclosed fluxes if there is adequate shield-
ing of the region of the field strengths. On the other
hand, the changes of parity produced by enclosed fluxes
remain observable even for an arbitrarily small overlap
between the incident particles and the field strengths. It
seems, then, appropriate to regard the parity of the state
as the kinematical counterpart of the nonintegrable phase
factor.

C. Nonlocal description of the quantum
effects of the fluxes

The interpretation of quantum effects of the fluxes in
terms of the global concept of the nonintegrable phase
factor occupies an intermediate place between nonlocal
theories, according to which the field strengths could act
on distant charged particles, and theories that emphasize
the local aspects of the electromagnetic interaction, trying
to establish the physical significance of the potentials.
We shall analyze in this section those theories which at-

‘tribute the Aharonov-Bohm effect to a nonlocal action of

the field strengths, and shall continue in the next section
with a discussion of the possibility that electromagnetic
potentials have an independent existence.

The suggestion that the quantum-mechanical motion of
a charged particle in given electromagnetic fields can be
regarded as the result of the nonlocal action of the field
strengths was made by Noerdlinger (1962), who expressed
the potentials @, A that intervene in the Schrodinger equa-
tion (4.4) in terms of the field strengths E,B. Thus, if we
take the divergence of Eq. (4.2a) and the curl of Eq.
(4.2b), and assume that the potentials fulfill the condition

19 | giva—o,

4.21
¢ ot ( )

the relations between the field strengths and the potentials
become

1 32 .
Ap— c—zﬁ =—divE, (4.22a)
1 3’°A 1 3E
AA—— =—curlB+———. .
o2 a2 curlB+ Py (4.22b)
A set of particular solutions of Egs. (4.22) is
divE |1, — 11T
)= 3 .
pr,n= [ py P d’r, (4.23a)
curlB— 19E r,t— r—r
A= [ ¢ o dr'
1,t)= .
4 |r—1'| 4
(4.23b)

Thus Eqgs. (4.23) express the potentials in terms of the
field strengths, although this may require consideration of
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field strengths in regions where the particle never passed.
An example of the application of Egs. (4.23) was previ-
ously considered in Sec. II.D, Eq. (2.91).

An alternative representation was suggested by DeWitt
(1962) and Belinfante (1962), who expressed the potentials
as path-dependent integrals of the field strengths. These
expressions can be obtained by submitting an arbitrary
potential distribution ¢, A to a transformation, Egs. (4.3),
generated by the gauge function

It
fo=[ (cpdt—Adr),

where the integration path connects the field-free region
at spatial infinity to the point where the potentials are be-
ing evaluated. The partial derivative of the gauge func-
tion fp comprises a term equal and opposite to the corre-
sponding component of the potential at the point r,# and
a term related to the flux through neighboring integration
paths, as shown in Fig. 87. Assuming that the integration
paths in Eq. (4.24) are defined by the functions z# of the
end point 1,7 and of the parameter £,

(4.24)

zt=zH¥(r1,1;§) , (4.25)
so that
Mr,t;E=0)=x* (4.26)
and
lim z*(r,t;€)=r, , (4.27)

— — o0

the gauge-transformed expression of the potentials be-
comes

az az
f L@ e o

This form of the potentials, reported by DeWitt (1962),
provides an interpretation of the Aharonov-Bohm effect
in terms of the field strengths, acting, however, nonlocally
on the charged particle. The expression of the potentials
by Eq. (4.28) is still dependent upon the choice of integra-
tion paths z*(r,t;£). It can in fact be shown that a dif-
ferent set of paths Z¥(x,t;£) in Eq. (4.28) would produce
another distribution of potentials. These new potentials
can be obtained from the old potentials by a transforma-
tion, Egs. (4.3), whose gauge function is given by the elec-
tromagnetic flux enclosed between paths belonging to the
two families, as shown in Fig. 87.

The gauge transformation generated by the function
fp> Eq. (4.24), can be applied in the case of idealized field
distributions like an infinite magnetic string or a toroidal
string. The resulting potential distributions are, however,
singular, and due attention must be given to the conver-
gence of the line integrals involved in the transformation.
Formulations of the quantum-mechanical interaction of
charged particles emphasizing the use of field strengths in
connection with the Aharonov-Bohm effect have been
also discussed by Mandelstam (1962), Strocchi and
Wightman (1974), Vainshtein and Sokolov (1975), Meni-
koff and Sharp (1977), Goldin, Menikoff, and Sharp
(1981), and Cloizeaux (1983). There is, however, no

dE . (4.28)
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FIG. 87. Integration paths in DeWitt’s expression of the elec-
tromagnetic potentials in terms of the field. strengths [Eq.
(4.28)]; this expression involves the electromagnetic flux en-
closed  between  neighboring  paths  z*(r,¢;§) and
zMr+Ar,t +At; &), where & describes the paths parametrically
from the field-free region at spatial infinity to the point r,z. A
different set of paths Z#(r,z;£) arriving at the same point r,?
would produce another distribution of potentials, related to the
former by a gauge function equal to the flux enclosed between
the two paths.

unique representation of the electromagnetic interaction
through field strengths, for such theories are still subject
to gauge transformations generated by arbitrary functions
f of E(r,t) and B(r,1).

Recently Roy (1980) and Roy and Singh (1984) demon-
strated that the quantum effects of a finite-length string
can be consistently described by considering the changes
in the probability distribution of the incident state, pro-
duced by interaction with the return magnetic field of the
string. The work of Roy (1980) emphasized the possibili-
ty of field-strength representations of the quantum effects
of the fluxes, in contradistinction to the description based
on gauge-dependent electromagnetic potentials originally
suggested by Aharonov and Bohm (1959). As an example
of this approach, we show below that the canonical angu-
lar momentum of the eigenstates of a charged particle in-
teracting with a finite-length string is quantized in integer
multiples of #. This quantization of angular momentum,
which was briefly discussed at the end of Sec. ILC, is
equivalent to the existence of quantum effects of the mag-
netic flux enclosed in the string.

We shall further analyze the changes in the phase of
the wave function of a particle of charge g and mass M,
produced by the action of the return magnetic field of a
string of length L, and carrying the flux F. The phase
changes will be determined by considering the pattern of
the velocity field, v, Eq. (1.112), which according to Egs.
(1.110) and (1.111) is governed in the classical limit by
classical equations of motion and boundary conditions.
The eigenfunctions of a free particle having energy



Olariu and Popescu: Quantum effects of electromagnetic fluxes 425

#2k?/2M and angular momentum #m about the z axis are
given by J,,(kr)exp(im@), where r and O are the polar
coordinates in the plane of motion, and J,, the Bessel
function of order m. At large distances, where
r>> | m | /k, this state is the superposition of two radial
waves

exp | +i +im@ |, (4.29)

Ui

1 rm ™ _ T
 [27kr)'? 2 4

whose velocity fields v; have a radial component
+#k /M and an azimuthal component #m /Mr. Thus the
velocity patterns of the free states, Eq. (4.29), consist of
the straight lines I'g shown in Fig. 88. Let us now consid-
er the effects on the pattern of the velocity field v of a
magnetic flux F enclosed in a string of length L, orient-
ed along the z axis and having its center at the origin of
the coordinates. We approximate the solution in the pres-
ence of a magnetic flux by Eq. (4.29), which is the solu-
tion for zero flux. This results in a change Av, of the
velocity field, produced by the z component of the mag-
netic strength B,(r,z) such that the field is normal to the
unperturbed direction of v and has the magnitude

Avl(r,z)=~A3—cfrsz(r,z)dr R (4.30)
where quadratic terms in B, have been neglected. The
lines of the velocity field are correspondingly displaced,
and it can be shown that the distance between any pair of
paths 'y and Ty, converging in the absence and in the
presence, respectively, of the magnetic flux to the same
asymptotic limit, is given by

FIG. 88. Action of the return flux of a finite-length magnetic
string - F on the phase of the eigenfunctions with cylindrical
symmetry of a charged particle of energy #°k%/2M and angular
momentum #m about the string. In the absence of the flux, the
probability currént flows along straight lines I'y and I'y. The
return magnetic field of the string shifts the current line I'g into
the line I'r. For very large lengths of magnetic string, the re-
sulting variation of the kinetic angular momentum converges to
the finite value — gF /27tic.
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aﬂr,z):ff—%Avl(r,z)dr . 4.31)
As a result of the displacement described in Egs. (4.30)
and (4.31), the paths I'y and ' shown in Fig. 88, which
intersect the same point Q in the absence and in the pres-
ence, respectively, of the magnetic flux, are inclined one
with respect to the other by the angle

MAv,(r,2)
#k

an approximation valid for |Af0| <<1 and r>> |m | /k.

Substituting in Eq. (4.32) the expressions of Av, [Eq.

(4.30)] and of a; [Eq. (4.31)] yields, after an integration
by parts,

a,(r,z)

Ab(r,z)= , (4.32)

A6(r,z)=—A— [ “rB,(r,2)dr . (4.33)

#ikcr
Since the magnitude of v is conserved during interaction
with the magnetic field, the change in the azimuthal com-
ponent of the velocity field is given by

so that the variation #AA of the kinetic angular momen-
tum of the particle is

AA=krAf . (4.34)

Substituting above the expression of A6(r,z), Eq. (4.33),
yields

Ahzéfrerz(r,z)dr ,
in agreement with the previous result, Eq. (2.74). As dis-
cussed at the end of Sec. I1.C, the variation in the kinetic
angular momentum is compensated for by the change in
the vector potential, Eq. (2.75), so that the canonical an-
gular momentum

(4.35)

Mr2)+ L rdg(r,z)=m (4.36)
#ic

is a constant independent of r and z. Since at very large

distances, 7 >>L, the angular momentum is quantized in

integer multiples of %, from Eq. (4.36) the canonical angu-

lar momentum turns out to be an integer multiple of #

throughout the space.

In order to appreciate the kinematical effects of the re-
turn magnetic field of a finite-length string, let us evalu-
ate the variations Av,, a;, and AA in the median plane
z =0, where the field strength is

F Ly/2
B,(r0)=—————5—7+ . .
z(r ) 2 (r2+L(2)/4)3/2 (4.37)
Equations (4.30), (4.31), and (4.34) yield
F r
Avy=——1 1— .
T T ML (r24+L3/4)17? J @8
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gF Ly/2
— , 4.38b
“ 2mhick r4+(r2+L%/4)? ( )
and
Lo/2
Ar=—9E 0 (4.380)

— i (r2+L(2)/4)1/2 .

It is apparent from Egs. (4.38) that the change Av, of the
velocity field becomes vanishingly small for large L,. On
the other hand, the displacement a, of the lines, and the
variation AA of the kinetic angular momentum converge
for large L, to the finite limits a, = —qF /2w#kc and
AA= —qF /2mfic, and in this respect a finite-length string,
though very long, is quite different from an infinite mag-
netic string, with no return fields.

In the preceding analysis we assumed that the radial
distance was large compared to the particle wavelength,
r>>|m|/k. At small distances, r < |m | /k, the in-
coming and outgoing waves, Eq. (4.29), are described by
Hankel functions, which are singular at the origin. Con-
sequently, the radial component of the quantum-
mechanical velocity field becomes vanishingly small as
the lines of current approach the origin on spiralled paths.

The nonlocal character of the representation of the
‘Aharonov-Bohm effect based on the action of the field
strengths on the phase of the wave function becomes ap-
parent when we consider the distribution of the probabili-
ty density of the particle. Thus the presence of a return
field implies quantization of the canonical angular
momentum of the eigenstates in integer multiples of #.
Now a suitable superposition of states, Eq. (4.29) can
describe a wave packet whose evolution is restricted, for
example, to the region in the vicinity of the center of the
string, where return fields are negligible. As discussed in
Sec. IL.B, the phase of the packet will, however, be shifted
by an amount proportional to the magnetic flux of the
string. This means that the flux-dependent phase shift is
attributed to the presence of the return magnetic field in a
region where the particle does not move.

Throughout this work it has been assumed that elec-
tromagnetic fluxes are given functions of position and
time. However, Aharonov. and Bohm (1961) included in
their treatment the sources of flux by means of a many-
body Schrodinger equation. They showed that the results
are precisely the same as those given by specified field
distributions, in the limit of large mechanical inertia of
the particles in the source. Peshkin, Talmi, and Tassie
(1961) reached a similar conclusion by considering a
mechanical model of the source of magnetic field, in the
form of a long charged cylinder having a moment of iner-
tia .# . They found that, in the limit of large .#,, the in-
troduction force vanishes, and the interaction can be
described by electromagnetic distribution specified as
functions of position and time. The problem of the forces
exerted by freely moving charges upon one another was
discussed in detail by Breitenberger (1968), with the aid of
Darwin’s expression of the Lagrange function for two
charged particles.- The possibility that lag forces were ex-
erted on the passing particle in response to the perturba-
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tion of motion of the particles in the source was reviewed
by Boyer (1973a,1973b). Boyer points out that, although
energy calculations provide a suggestion of a lag effect,
there is no realistic account of the electromagnetic force
that would have to act on the passing particle.

In a completely different approach, Liebowitz
(1965,1966) asserted that there is an additional term be-
sides the Lorentz force acting on a charged particle, given
by the gradient of an interaction energy between the mag-
netic field of the incident particle and the magnetic field
of the particles in the source. However, Hraskd (1966)
pointed out that a similar term is already included in the
field part of the conventional Lagrange function, so that
from a heuristic viewpoint its repetition in the interaction
part of the Lagrange function would be unlikely. More-
over, Kasper (1966,1967) argues that, because of the skin
effect, the magnetic field of the incident particle cannot
always penetrate into the region of the sources of the elec-
tromagnetic flux, a conclusion with which Liebowitz
(1967) disagrees. The validity of Liebowitz’s theory was
tested experimentally by Lischke (1970b), who placed the
source of an enclosed magnetic flux in a superconducting
shield, so that the magnetic field of the incident particle
could not penetrate into the region of the enclosed flux.
The quantum effects of the enclosed magnetic flux were
still observed, thus proving that the existence of
Liebowitz’s force is unlikely.

D. Possibility of local observation
of the electromagnetic potentials

The characterization of a physical process as local or
nonlocal is to a certain extent arbitrary. For example, the
interactions are local in classical electromagnetism when
regarded as being mediated by the field strengths, but be-
come nonlocal if the field strengths are expressed as re-
tarded integrals depending on the charge distribution.
Similarly, the action of the field strengths in the
Aharonov-Bohm effect is nonlocal when viewed in terms
of the probability density of the incident charged parti-
cles, but the same effect can also be described as the local
action of the field strengths on the phase of the wave
function of the charged particles. What is beyond any
doubt is the fact that before the discovery of the
Aharonov-Bohm effect it was believed that electromag-
netic effects on a charged particle confined to a certain re-
gion of space were entirely determined by .the distribution
of field strengths in the accessible region, whether the
motion of the particle was described classically or quan-
tum mechanically. Now, however, Ehrenberg and Siday
(1949) and Aharonov and Bohm (1959) have demonstrat-
ed that the distribution of electromagnetic flux in the
inaccessible region can produce observable changes in the
probability pattern of the charged particle, even when the
overlap between the probability density and the field
strengths is vanishingly small. Therefore, whatever may
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be the description of the quantum effects of the fluxes, it
remains true that a knowledge of the field strengths in the
region of space accessible to the charged particle is not in
general sufficient to account for all the electromagnetic
effects that may actually occur in that region. These elec-
tromagnetic effects may be completely and consistently
described by specification of the nonintegrable phase fac-
tor R, Eq. (4.7), correspondingly to all the loops at the
boundary of the region under consideration.

The global interpretation of quantum effects of the
fluxes in terms of the nonintegrable phase factor, which
requires specification of the electromagnetic variables in-
side and on the boundary of the region accessible to the
charged particle, occupies an intermediate place between
the nonlocal theories discussed in the preceding section
and the local approaches presented further in this section,
which seek to give a physical significance to the elec-
tromagnetic potentials. The principal question as to the
observability of the potentials is based on their gauge arbi-
trariness, Eqgs. (4.3) and (4.6). Since the nonintegrable
phase factor, Eq. (4.7), is invariant to regular gauge
changes which conserve the field distribution throughout
the space, the existence of quantum effects of the fluxes is
not sufficient to demonstrate the reality of the elec-
tromagnetic potentials. On the other hand, the field con-
cept was introduced just in order to localize the descrip-
tion of the electromagnetic interaction, so that the adop-
tion of nonlocal, or even intermediate, global representa-
tions of electromagnetism would partly remove the justifi-
cation for the use of field variables. The importance of
having a coherent and clear conception of the quantum
effects of the fluxes was stressed by Aharonov and Bohm
(1961,1962,1963), who suggested that a further interpreta-
tion of the potentials is needed in quantum mechanics.

In an attempt to attribute a local significance to the
electromagnetic potentials, Trammel (1964) discussed the
action and reaction forces between two charged particles
and suggested that the vector potential could be related to
the canonical momentum of the charged particles. A
similar observation was reported by Costa de Beauregard
(1966a,1966b), who pointed out that the conservation of
momentum and energy in electromagnetism can be ex-
pressed conveniently with the aid of the vector potential
in a particular gauge. Moreover, Boyer (1973a) con-
sidered the interaction between a charged particle and a
solenoid, and found that the field energy and momentum
can be expressed in terms of the vector potential of the
solenoid at the position of the moving particle. More re-
cently, Konopinski (1978) suggested that the vector poten-
tial describes the field momentum available for exchange
with kinetic momenta of charged matter, and Fowles
(1980) pointed out that the vector potential could be relat-
ed to the momentum of the electromagnetic field of the
moving charges. In order to appreciate these considera-
tions quantitatively, let us analyze the interaction of two
particles of charges ¢; and g, and masses M; and M,.
The Lagrange function of the system of the two particles
can be obtained by considering the Lagrange function of
one of the particles
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—0

» 172
L,=—M? [1—— l —q1py(ry,8)
c

+gc-1-v1A2(r1,t) (4.39)

in the presence of the potentials due to the other particle,

q2
@a(r)= R. (4.40a)
g | v2  (viRjp)Ry,
As(ry))==— , (4.40b)
L 2C R12 R?Z

where v; and v, are the velocities of the particles and
R,=r;—r, the distance between them (see, for example,
Landau and Lifshitz, 1951). If radiation effects are
neglected, the total Lagrange function of the system is
given by

M} , Muws qiq,
Lip=5Mvi+ + Myl +——=—
2= 2M1Y 8C2 2 H2Y2 8c2 Ry,
(viRpp)(vaR )
‘I;‘h vy, K2 - 2Kz ) 4.41)
2(,‘ R12 R]z
The total canonical momentum becomes
oL, OdLp vi v3
=M, |1+— M, (14—
8v1 i')vz ! + 2(,'2 vi+ide + 2C2 V2
49192 v Rpx(viRyy)
2R, | R2,
CACEE Rx(vaRyy)
ZCZRD 2 R%z

(4.42)

Now the rate of change of the canonical momentum can
be expressed with the aid of the Lagrange equations as

dLy, OLy, _8L12+6L12

d
aVl * 8v2 6r1 arz

dt

(4.43)

However, since the Lagrange function, Eq. (4.41), depends
only on the relative distance Rj,=r;—r,, we have

8L12 aL12

=0
or; or, ’

(4.44)
so that the total canonical momentum is conserved
(Darwin, 1920; for a review of the problem see Breiten-
berger, 1968). If we compare the expression of the canon-
ical momentum, Eq. (4.42), with the potential, Eq. (4.40b),
we see that the canonical momentum can be written as

oL, 9Ly,
_+_
ov, v,

V1+ %Az(rl)

vl
=M, 1+;2'
2
U2 492
+M, [I—F*—z ]V2+——A1(T2) , (4.45)
2c c
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where A(r,) is obtained from Eq. (4.40b) by a permuta-
tion of the indices. Since, on the other hand, the sum of
the kinetic momentum of the two particles and of the
momentum of the electromagnetic field is also conserved,
the terms in Eq. (4.45) proportional to the vector potential
represent the momentum of the field. However, the latter
is obtained from the cross product EXB, so that the
identification can hold only in a particular gauge. It is
this analogy that suggests, but does not require, the possi-
bility of a local significance of the vector potential.

It is worthwhile to point out that the potentials of a
moving charge are connected by

A= -‘Clcp , (4.46)
where v is the retarded velocity. According to Eq. (4.46),
we could regard the vector potential A as the current of
the scalar density ¢. However, while Eq. (4.46) holds
when the potentials fulfill the Lorentz condition
dp/cdt+divA =0, the potentials, Eqs. (4.40), are ex-
pressed in a different gauge. This example shows that ar-
guments concerning the local reality of the potentials
must be regarded with caution.

Wisnivesky and Aharonov (1967) and Aharonov,
Pendleton, and Peterson (1969) apparently considered the
quantum effects of the fluxes as a manifestation of the
nonlocality of the electromagnetic interaction; later
Aharonov and Carmi (1973,1974), Harris and Semon
(1980), and Semon (1982) discussed the possibility of at-
tributing a local kinematical significance to the elec-
tromagnetic potentials, analogous to the mechanical po-
tentials that appear in noninertial frames of reference.
The observable effects depend, however, on loop integrals
of the potentials in the noninertial frame, and therefore
do not uniquely determine the local value of the poten-
tials.

From a different viewpoint, Philippidis, Bohm, and
Kaye (1982) have emphasized the importance of the con-
cept of the electromagnetic vector potential in quantum-
potential representations of quantum mechanics. In this
approach it is assumed that the particles move classically
along paths identical to the lines of the conventional prob-
ability current, as a result of the action of a force which
would depend on the wave function of the particle. These
arguments concerning the significance of the vector po-
tential are heuristic in nature, and the observable effects
still depend on loop integrals of the potentials.

An apparent dependence on the gauge of the potentials
can be seen in conventional perturbation theory , which
y1e1ds the transition amplitudes between the eigenstates
111,, of an unperturbed Hamiltonian )24 0s

S
Hy=22+U, (4.472)
HyO=E WY, (4.47b)

produced by a potential-dependent perturbation V in the
Schrodinger equation
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m%‘%:(ﬁﬁ P, (4.48)
where ﬁ: —i#V and U is a static potential energy. If the
perturbation ¥ describes the interaction of a charged par-
ticle with a distribution of potentials ¢, A, a change of
gauge of the potentials, Eq. (4.3), will introduce a phase
factor exp(igf /#c) in the solution of Eq. (4.48), while the
eigenstates, Eqs. (4.47), remain unaffected. It was, how-
ever, shown that as far as resonant interactions are con-
cerned, the transition probabilities are unaffected by the
choice of gauge (Goldman, 1977a; Haller and Sohn, 1979;
Aharonov and Au, 1979; Olariu, Popescu, and Collins,
1979). In order to obtain a manifest gauge invariance of
the perturbation theory, Yang (1976) suggested that the
basis states 1, be chosen as the eigenfunctions of a basis-
defining operator

2
1 ~ q
HB‘—ZM —CA} +U, (4.49a)
Hp=E, ()Y, . (4.49b)

With such a definition, both the basis states 1, and the
time-dependent solution W would be multiplied by the
phase factor expligf /#ic) as the result of a gauge change,
so that the transition amplitudes would become manifest-
ly gauge invariant. Kobe, Wen, and Yang (1982) and
Yang (1982,1983) supported this choice of a basis-
defining operator on the grounds that radiation-counting
devices measure radiation energy fluxes, whose flow is
governed by an energy conservation law involving H p. It
must, however, be stressed that in principle it is not neces-
sary for the initial and final states of a problem to be the
eigenstates of a certain operator, the only requirement be-
ing that the wave functions representing the same states
i,f in different gauges be related by

qf

¢l = lbz,fCXp (4.50)

The requirement stated by Eq. (4.50) is automatically ful-
filled when the initial and final states are eigenstates of a
gauge-invariant operator, but this operator may represent
not only the sum of kinetic and static potential energy, as
H p does, but also the kinetic energy alone, or the kinetic
momentum, or the kinetic angular momentum, or any
other measurable quantity whatsoever (Aharanov and Au,
1983; Epstein, 1983; Au, 1983).

As an example of a situation when the eigenstates of
Hp are not useful as wave functions for the initial and fi-
nal states, let us consider a charged particle interacting
with an applied electromagnetic field that varies adiabati-
cally in time. The quasistationary states of the problem
have the form

W, (1) =, (De —/PE (0t ,

where 1, are the eigenfunctions of the complete Hamil-
tonian H =Hp +q¢@ (Landau and Lifshitz, 1977, p. 194)

(4.51)



Olariu and Popescu: Quantum effects of electromagnetic fluxes 429

(4.52a)

(4.52b)

Let us assume that the potential energy U =Maw?*x2/2
corresponds to a one-dimensional charged harmonic oscil-
lator of frequency w, which interacts with a uniform elec-
tric field whose intensity E (¢) is varying adiabatically in
time. The eigenfunctions of the complete Hamiltonian
H, Eq. (4.52), can be expressed as the conventional
Hermitian  polynomials, centered, however, on
xo(t)=qE (t)/M®?. 1In the same time, the energy eigen-
values of the full Hamiltonian H will be shifted by
q2E*(t)/2M »?*. In accordance with Ehrenfest’s principle,
this corresponds to the work f gE dxy done by the ap-
plied field onthe particle. By contrast, the eigenstates of
the operator H B, Eq. (4.49), are unaffected by the applied
field. It is interesting that a perturbation that appears to
be adiabatic in a certain gauge is not necessarily adiabatic
in all gauges. For example, the uniform field E (¢) can be
represented by the potentials o= —E (¢)x, A=0, and if
E (1) is adiabatic, | AE /At | << | E(T)| /t, then @(z) will
also be adiabatic. The same electric field ,can be
represented by the potentials ¢=0, 4,=—c f OE(T)dT,
A, =0, A,=0, which are no longer adiabatic. Therefore,
in this case the quasistationary states of the problem are
related to the eigenfunctions of the full Hamiltonian in-
cluding the potentials in the gauge o= —E(¢)x, A=0.
There are other problems where the differences between
H 05 H B, OF H as basis-defining operators are not impor-
tant. It can be shown, for example, that the transition
probabilities between eigenstates of operators of the type
in Eq. (4.49a) are identical at resonance to the transition
probabilities between eigenstates of the unperturbed Ham-
iltonian, Eq. (4.47a) (Olariu, Popescu, and Collins, 1979).

E. Mulitivalued representations

The electromagnetic potentials generated by a distribu-
tion of enclosed electromagnetic fluxes can be obtained in
a field-free region of space by differentiation of a scalar
function f according to (Byers and Yang, 1961)

1 9fo
p=— vt (4.53a)
A=Vf,. (4.53b)

This means that if ¥, is a local solution of the
Schrodinger equation in the field-free region for vanishing
potentials, then

\I"p,Az‘I’(%A)=oexp(iqfo/ﬁc)

will be a local solution of the Schrodinger equation in-
cluding the potentials ¢, A. However, the phase factor
expliqfy/#ic) is in general multivalued in the region acces-
sible to the incident particle, so that the functions appear-
ing in Eq. (4.54) must be rendered single valued by cuts.

(4.54)
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In this section we show that wave functions obtained with
the aid of multivalued gauge transformations which elim-
inate the potentials from the field-free region can be used
in the description of two-slit scattering of charged parti-
cles in the presence of an infinite magnetic string, provid-
ed that certain cuts are appropriately placed in the
domain of definition of the wave functions. These cuts
render the components of the total wave function single
valued, though discontinuous, and approximate the
behavior of the actual states in regions of rapid phase
variation.

Let us assume that in the absence of magnetic flux the
incident wave packet is split into two coherent com-
ponents ¥’ and ¥, each passing through one of the slits
to arrive in the observing plane with the total amplitude

Yo=10"+95 . 4.55)

If the enclosed flux F is generated by a magnetic string
coinciding with the z axis, the vector potential of the
string can be expressed as

.

= ve, (4.56)

where 6 is the polar angle in the x,y plane. The states in
the presence of the magnetic string are single-valued solu-
tions of the Schrédinger equation including the vector po-
tential, Eq. (4.56). According to Eq. (4.54), these solu-
tions are connected to the solutions in the field-free region
of the Schrodinger equation including the potential A=0
by

Ya=va—_oexpligF0/2m#c) . (4.57)

This suggests that the wave functions representing the
coherent packets could be obtained through multiplication

A 72

MAGNETIC
FLUX

(n (2)

OBSERVING PLANE

FIG. 89. Representation of two-slit scattering of a charged par-
ticle in the presence of a magnetic string, with the aid of mul-
tivalued functions. These functions are rendered single valued
through the cuts shown in the figure by the heavy lines. The
cuts approximate the continuous, single-valued states in regions
of rapid phase variation.



430 Olariu and Popescu: Quantum effects of electromagnetic fluxes

by the phase factor exp(igF6/2mfic). However, for nonin-
teger gF /2m#c the phase factor is multivalued, so that the
solutions ¥4, and 1/1(,%):0 which would represent the
packets must be rendered uniform by cuts. Since these
cuts are in general distinct for the two coherent states, we
shall choose the origin of the polar angle 6 such that the
bisector of the angle determined by the cuts coincides
with line | 6| =, as shown in Fig. 89. If we assume fur-
ther that, except for the region in the vicinity of the cuts,
the states 94, and 92, are essentially the same as the
unpertuibed states 1/15” and ¥, and restrict the angle 6 to
the interval —m <0 <, the expressions of the ampli-
tudes 1/1}-1) and w(p” for arrival in the observing plane
through each of the slits are

(¢81J+¢82))eiqf‘0/21rﬁc, —(T—8)<O<m—b8

ein(B—‘n')/Zﬂ‘ﬁc
’

Yp=

1) —i 2) i
[¢6 )e th/Zﬁc_‘_l/jt) )eth/ZﬁL‘

[lﬁgl)ein/zﬁc+¢gz>ein/zﬁc]ein(6+n>/2ﬁc’ r<O<m—b.

This analysis is essentially equivalent to the original
demonstration by Aharonov and Bohm (1959) of the ex-
istence of the quantum effects of enclosed magnetic
fluxes. It is apparent from Eq. (4.60a) that the magnetic
string does not affect the coherence of the components of
the total wave function in the incidence region. On the
other hand, according to Egs. (4.60b) and (4.60c), the rela-
tive phase of the components passing by opposite sides of
the string is shifted by gF /#c, which generally results in

flux-dependent changes in the probability pattern, observ- -

able throughout the region between the two cuts.

It is interesting to compare the analysis from this sec-
tion with the propagator technique developed in Secs. I
and II. If we use Eq. (1.6) to compute the wave function
in the observing plane, the principal contribution will
arise from the regions in the vicinity of the slits, or from
the regions in the vicinity of the virtual images of the
electron source in actual experiments. The propagator of
a charged particle in the presence of a magnetic string,
Eq. (2.43), is a periodic function of the difference between
coordinates of the observing point 8 and of the source
point @', although the propagator undergoes a rapid but
continuous variation across the surface |0—0'|=m.
Equation (2.48) approximates the propagator well, unless
|6—6'| is close to 7, when the phase of the approximate
form is discontinuous by gF /#ic. Then if we use this ap-
proximate expression in the calculation, we must observe
the condition that |6—6'| <, under which Eq. (2.48) is
valid. The condition |6—6'| <7 determines two distinct
regions corresponding to the different angular positions of
the slits, across which the phases of the coherent com-
ponents are varying by gF /#ic, and this fact is reflected by
the cuts appearing in the wave-function equations (4.60).

The gauge transformation approach can also be used to
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T—-8<0< T

" YDeidFo/2mhe o g 7§
h_ o 4.58
Y DeiaFO=2m2mhe o & 0o ( )
and
(2) i
@ l% elaFO/2me_(r_8)<O<m
Fo= ; )
(2)_igF )
YDe 4 (9+211')/217ﬁc, —7T<O0< —(r-39), 4.59)

where 28 is the angle between the cuts. Thus the cut
operates upon the wave function like a gF/#ic phase
shifter (Wegener, 1960). The total amplitude ¥ for ar-
rival in the observing plane is the superposition of the
states given by Egs. (4.58) and (4.59), and is

(4.60a)
(4.60b)

(4.60c)

[

describe scattering by a pair of magnetic strings carrying
opposite fluxes, considered in Sec. IL.D. The vector po-
tential of this magnetic distribution is

A=L ve,—0,),
21

(4.61)
where 6, and 6, represent the polar angles about each of
the strings. Then an approximate form of the flux-
dependent wave function is given by

= woein(G‘—-Bz)/Zﬁﬁc ,
where 1, is the unperturbed wave function. From the re-
sults reported in Sec. ILD, it is apparent that the cut
which renders the phase factor single valued in Eq. (4.62)
would be the surface spanning the strings, shown in cross
section by the dotted line in Fig. 29. It must be em-
phasized that, in the vicinity of the cut, the effects of the
enclosed fluxes are not mere phase shifts, but involve ob-
servable changes in the probability pattern.

Let us now consider a distribution of enclosed elec-
tromagnetic fields that is complementary to a field-free
region, and let us moreover assume that the whole space
is in principle accessible to a charged particle, although
the probability for the particle to be found in the region
of the field strengths may be very small. If the distribu-
tion of the field strengths is represented throughout the
space by the potentials ¢, A, the potentials in the field-
free region can be expressed in the form of Egs. (4.53).
The function f, appearing in Egs. (4.53) is not single
valued, but it increases by

(4.62)

Afo=Plcpdt—Adr)

with every rotation around the region of enclosed flux.
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The potentials @, A from the field-free region can be elim-
inated by a gauge transformation generated by the func-
tion — fy, and the solutions of the Schrodinger equation
in the two gauges are connected in the field-free region by

—iafo/te (4.63)

Vi, a)=0="Yg, ae
The Schrodinger equation in the gauge ¢ =0, A=0 for-
mally coincides with that of a free particle. However, the
gauge transformation. generated by the singular function
—fo changes the distribution of field strengths (Ingra-
ham, 1972; Zeilinger, 1979; Bohm and Hiley, 1979; Mig-
naco and Novaes, 1979; Bawin and Burnel, 1980; Rowe,
1980). This modification can be compensated for by im-
posing periodic boundary conditions on the wave function
W, a such that the reduced electromagnetic flux remain-
ing in the equation and the reduced flux hidden in the
periodic boundary conditions add up to the reduced elec-
tromagnetic flux of the real electromagnetic distribution
(Byers and Yang, 1961; Kretzschmar, 1965a; Breitenecker
and Grumm, 1980; Rothe, 1981; Wilczek, 1982a,1982b;
Jackiw and Redlich, 1983). Thus it is the solution W, 4,
corresponding to the regular potential distribution, which
has the property of single valuedness (Buchdahl, 1962;
Merzbacher, 1962; Pandres, 1962; Riess, 1973; Mignaco
and Novaes, 1979), while the phase factor exp(ief,/#c)
and W, a)—o are in general multivalued. For example,
the vector potential 4,=0, A =F/2x%r, r >R, of an in-
finite solenoid of radius R, carrying the magnetic flux F,
could be eliminated in the field-free region by a gauge
transformation - generated by the function —f
= —FO0/2w. This transformation, however, introduces
into the field distribution a fictitious magnetic string
along the z axis, carrying the flux — F, equal and opposite
to the total flux in the solenoid. If we now consider the
scattering of a plane wave by an infinite magnetic string
discussed in Sec. II.A, we see that the regular solution
W, a in Eq. (4.63) would correspond to the continuous,
single-valued wave function ¥,(r,0), Eq. (2.5), while the
phase factor in Eq. (4.63) would be the multivalued func-
tion exp(—ieF0/2mhc). If we multiply the asymptotic
expression of ¥,(r,0), Eq. (2.13), by this multivalued
phase factor, we see that the state designated in Eq. (4.63)
by W(, a)=0 approaches the unperturbed incident wave
exp(—ikx). This justifies the premise that led us to the
expression of the total wave function in the observing re-
gion, Egs. (4.60). On the other hand, there are essential
differences between the gauge-transformed state W, a)—o
and the true unperturbed state Wp_,=exp(—ikx) corre-
sponding to a situation when the enclosed flux was zero.
These differences appear in the case of scattering by an
infinite magnetic string in the vicinity of the half-plane
| 8| =1r. The states designated by the index A=0 in the
development leading to Egs. (4.60), which were rendered
single valued by cuts, are thus approximations of states of
the type of W(,, a)—o in Eq. (4.63), and not of the true un-
perturbed state Wy _,.
By imposing an unnecessary requirement of single
valuedness on the phase factor appearing in the singular
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transformation, Eq. (4.63), Costa de Beauregard (1972) in-
ferred that a perfectly enclosed magnetic flux would be
quantized in integer multiples of 2fic /e. Later, by al-
lowing double-valued phase factors in the transformation,
Eq. (4.63), which would be consistent with a representa-
tion of the electrons by the Dirac equation, Costa de
Beauregard and Vigoureux (1974,1982) predicted the
quantization of the enclosed magnetic flux in multiples of
7fic /e. However, as emphasized by Keller and Zumino
(1961), the quantity that is always quantized is the flux-
oid, Eq. (1.120) or Eq. (3.47), and not the electromagnetic
flux itself. As discussed in Sec. IILF, Bardeen (1961) has
in fact shown that in superconducting tubes of very small
diameter, with wall thickness of the order of the penetra-
tion depth, the unit of quantization of the magnetic flux
may depend on dimensions and temperature and be small-
er than 7#ic /e. Thus, in general, the magnetic flux is not
quantized in multiples of w#c/e, even if completely
trapped in a certain region of space.

In the accessible region, the probability distribution is
invariant to the multivalued gauge transformation, Eq.
(4.63), provided that the boundary conditions and the rep-
resentation of the operators is consistent with the chosen
gauge of the potentials. If the entire space is in principle
accessible to the charged particles, and the electromagnet-
ic field is specified by regular potential distributions, the
boundary condition is that the wave functions be single
valued when the operators for the canonical momentum
have the conventional representation p= —i#V. In this
case the property of single valuedness is a consequence of
the commutation of the components of the canonical
momentum, which ensures that VX V¥ =0 at every point
in space. If the space is formally multiconnected, so that
there are certain regions that are inaccessible to the
charged particles, the eventual use of multivalued wave
functions cannot be excluded a priori. If we apply the
condition of single valuedness of the wave function in the
gauge where the potentials are vanishing in the accessible
region, then all the effects of the enclosed fluxes will be
transformed away by the multivalued phase factor in Eq.
(4.63). With such an approach, the wave function would
be multivalued in the regular gauge ¢, A, while the proba-
bility distribution would remain identical to that of a free
particle in the absence of any flux. This possibility was
already mentioned by Aharonov and Bohm (1961), who
stressed, however, that the requirement of single valued-
ness must be applied to W, 5 and not to ¥y, o)—o-

More recently, Bocchieri and Loinger (1978,1979,1984)
and Bocchieri, Loinger, and Siragusa (1979) suggested
that quantum effects of the fluxes do not exist, basing
their analysis on an improper use of multivalued wave
functions in a representation where the potentials are reg-
ular and the canonical momentum has the form
P=—i#iV. Later they attempted to relate their con-
clusion of the nonexistence of the Aharonov-Bohm effect
to formulations of quantum electrodynamics involving
solely the field strengths E and B (Bocchieri and Loinger,
1980,1981a,1981b; Bocchieri, Loinger, and Siragusa,
1980). Throughout these works, Bocchieri, Loinger, and
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Siragusa took the position that the experimental evidence
concerning the reality of the quantum effects of the fluxes
would be inconclusive, their assertion being, however,
hard to reconcile with the multitude of positive experi-
mental results discussed in Sec. III.

The theoretical viewpoint of Bocchieri, Loinger, and
Siragusa can best be illustrated by the problem of the rig-
id rotator in the presence of a magnetic string, discussed
in Sec. LE. Thus, in the regular or Stokesian representa-
tion, the vector potential of the string is

F

Ag= , A4,=0, 4.64
" 2R, T @.64)
and the Schrodinger equation has the form
2
1 ., O qF (F)
_ip 9 _aF —E , 4.65
2MR} 36 " 2me | VAT Erom¥a 465

where pg= —i#0d/90 is the operator of the canonical an-
gular momentum and — i#d/30—qF /2mc is the operator
of the kinetic angular momentum. The solutions of Eq.
(4.65) have the form

PalO)~e™?, (4.66)
and the condition of single valuedness
PYA(0+2m)=1,(6) (4.67)

renders the eigenvalues m of the canonical angular
momentum integer numbers. The corresponding energy
eigenvalue is then

" _
Rom ™ 2MR2

2
m—— | (4.68)

2mfic

and it depends on the amount of enclosed flux. As dis-
cussed at the beginning of this section, the potential act-
ing on the charged particle can be eliminated by a gauge
transformation generated by the function — F6/27. The
gauge-transformed potential is

Ap=0, A4, =0, (4.69)
and the Schrodinger equation has the form
1 821ﬁA=0 (F)
2MR(2, 06? = R0m¢A=0 . (4.70)

The operator of the canonical angular momentum in the
new gauge is

igpo/2mhe ;O  gF

—i ., O
e iqF 0/2mhc l_lh e

4.71)

while the operator of the kinetic angular momentum be-
comes (Kretzschmar, 1965a)

o gr

_ inH/Zﬂﬁc;_- 0
a6  2mc ¢ i

a6 -’

—iqF0/2mhic

e (4.72)

The periodic boundary condition is (Rothe, 1981)
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Ya—ol0+2m)=e ~H4E ey, _(0) 4.73)
so that the eigenfunctions of Eq. (4.70) are
¢A=O=ei(m —qF/Z‘rrﬁc)B’ m=0,+1. (4.74)

According to Eq. (4.71) the canonical momentum is again
m, an integer, while the energy eigenvalues EI({; )m are

equally given by Eq. (4.68). Now according to Bocchieri,
Loinger, and Siragusa (1980) and Bocchieri and Loinger
(1980), the eigenfunctions of Eq. (4.65) would be

YBLS=ilm—af2miel8 1y —0,+1,.. ., 4.75)
a set of multivalued functions, while the operators would
preserve their conventional expressions, in particular, the
canonical angular momentum would be — i#0/96 and the
kinetic angular momentum —i#d/060—qF /2mc. Thus
the canonical angular momentum would have noninteger
eigenvalues m —qF /2mfic, while the kinetic angular
momentum would be m, an integer. The energy eigen-
values defined by Eq. (4.65) would then be
EBPS—#2m2/2MR3, a spectrum that is independent of
the enclosed flux.

The suggestion of Bocchieri, Loinger, and Siragusa that
the Schrodinger equation (4.65) should be solved for the
regular potential distribution, Eq. (4.64), and the conven-
tional representation p= —i#AV of the canonical momen-
tum in terms of multivalued functions has been criticized
in the literature, as has their assertion that the experimen-
tal evidence on quantum effects of the fluxes is incon-
clusive (Klein, 1979,1981; Mackinnon, 1979; Greenberger,
1981; Lipkin, 1981; Peshkin, 1981a,1981b; Boersch et al.,
1981; Lipkin and Peshkin, 1982; Asorey, 1982;
Ruijsenaars, 1983; Aharonov, Au, Lerner, and Liang,
1984b). In a paper dealing with the recent experiments of
Tonomura et al. (1982) on toroidal magnets, Bocchieri,
Loinger, and Siragusa (1982) attribute the observed fringe
shifts to the penetration of the electron wave into the re-
gion of the magnetic field, which would thus act directly
on the phase of the wave function. Such a viewpoint is,
however, in marked contrast with their earlier statements
denying the existence of any observable effects of enclosed
fluxes.

Merzbacher (1962) has pointed out that physical space
is always simply connected, so that the wave functions
cannot be other than single valued. The wave functions
in idealized situations involving multiconnected spaces,
like the scattering by magnetic strings, can be obtained as -
limiting forms of more realistic situations where the space
is simply connected and the wave functions are unam-
biguously single valued. Such an approach was pursued
in Secs. ILE and ILF, and the results obtained there fully
confirmed the reality of the quantum effects of enclosed
fluxes.

As discussed in Sec. I.H, the single valuedness of the
wave functions entails the quantization of the circulation
of the velocity field, Eq. (1.120). A consequence of Eq.
(1.120) is that if in two situations the field strength distri-
butions are different, then it is not in general possible to
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prepare two states having identical velocity fields. If the
identity of incident states is decided, however, in terms of
the probability density p2 and the probability current
j=p?v, then it is possible to arrange that the differences
between the two states be arbitrarily small, by making the
probability p? vanishingly small in the region of the field
strengths. It is worthwhile to remark that the number of
fluxoid trapped, according to Eq. (1.120), in a certain loop
is changing when a zero of the wave function crosses the
loop under consideration.

CONCLUSIONS

The remarkable nature of the quantum effects of the
fluxes lies in their persistence as observable actions of
electromagnetic fields on the probability distribution of
charged particles, even when the overlap between particles
and field strengths is rendered arbitrarily small. The real-
ity of these effects means that a knowledge of the field
strengths in a region accessible to a charged particle is not
in general sufficient to uniquely specify the evolution of
the state of the particle in that region.

The observable action of enclosed electromagnetic
fluxes demonstrates the conceptual limitations of any
theory of electromagnetic phenomena based solely on the
local action of the field strengths. This situation is in a
sense analogous to the nondependence of the fringe pat-
tern on the orientation of the interferometer in the
Michelson’s experiment, which demonstrated the limita-
tions of traditional notions of space and time. While the
invariance of the interference pattern in Michelson’s ex-
periment heralded the new conception of space and time
introduced by the theory of relativity, it remains to be
seen whether the quantum effects of the fluxes, too, pre-
cede a major change in our conception of electromagne-
tism.
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FIG. 39. Electron interference with the electrostatic biprism,
for several values of the positive potential Uy of the biprism
fiber, as observed by Mollenstedt and Diker (1956). (a) For
U;=0, the pattern corresponds to scattering by the biprism
fiber and consists of two series of Fresnel fringes. (b) U;=1.5
V and (¢c) Uy=2.8 V: The distance between the two Fresnel
patterns is diminished. (d) Uy=4.0 V: The first maxima in
each series are overlapping and give rise to equidistant Young
fringes. (e) U;=5.0V, (f) U;=5.8V, and (g) Ur=7.0V: The
pattern of Young fringes is broadened and the distance between
consecutive fringes diminished with increasing Uy.
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FIG. 42. Effect of a homogeneous magnetic field on the elec-
tron interference pattern, as observed by Bayh (1962): (a) in-
terference pattern without magnetic field; (b) overall shift of the
pattern by a distance proportional to the applied field. The ar-
rows mark the location of the observing plane on the photo-
graphic plate.



FIG. 46. Biprism interference pattern of a very slightly tapered
whisker, observed by Fowler, Marton, Simpson, and Suddeth
(1961): (a) tip of the whisker; (b) continuation of (a). The offset
at the top of (b) is identical with that at the bottom of (a).



FIG. 48. Biprism patterns observed by Boersch, Hamisch, and
Grohmann (1962), which demonstrate the quantum effects of
the fluxes: (a) biprism interference pattern in the absence of the
layer of Permalloy; (b) and (c), patterns in the presence of a
layer of Permalloy deposited on the back of the biprism fiber.
The arrows indicate the direction of the enclosed magnetic flux.
The presence of the magnetic flux interchanges in this case the
position of light and dark fringes between (a) and (b) or (c), an
effect that is specific for the enclosed fluxes.



B=0 [F=0_

GOLD

g] B0

PERMALLOY
+GOLD

27722

@ to (@)

FIG. 49. (a) Diagram of the Permalloy-gold junction used by
Boersch, Hamisch, and Grohmann (1962) in the experimental
determination of the flux unit 2#ic /e; (b) and (c), fringe shifts
in the biprism interference patterns, produced in the vicinity of
the Permalloy-gold junction. The arrows indicate the directions
of magnetization in the two cases. The displacement of the en-
velope seen in (b) and (c) is due to the longitudinal component of
the magnetic field in the junction region, while the tilting of the
fringes relative to the envelope is the effect of the magnetic flux
enclosed between the interfering waves.
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FIG. 52. Contours of constant phase of the electron wave il-
luminating a toroidal magnet, as observed by Tonomura et al.
(1982). The phase in the inner region of the pattern is shifted by
an odd multiple of m, while the shape of the magnetic sample is
reproduced as a clear image on the interferogram. Since the
sample does not contribute to points outside the sample image,
the phase of the beam reaching the inner region was shifted by
the enclosed magnetic flux.



FIG. 53. Interference pattern obtained by the superposition of
the wave illuminating the sample and of a coherent wave in-
clined at a certain angle relative to the former, as observed by
Tonomura et al. (1982). The pattern consists of a system of
parallel fringes in the exterior region, continued by segments of
ellipses with the focus at the center of the toroidal sample, and
terminated by another system of parallel fringes in the inner re-
gion, shifted with respect to the exterior ones by gF /#c.



FIG. 56. Action of magnetic flux enclosed in a microscopic
solenoid on a biprism interference pattern, as reported by Bayh
(1962). At the bottom and at the top of the pattern, the magnet-
ic flux is held constant. In the middle, the increase in magnetic
flux is synchronous with the displacement of the photographic
film; the flux produces a shift of about four fringes, while the
envelope of the pattern remains unchanged.



FIG. 68. Variation of the resistance of a hollow cylinder with
applied magnetic field at its transition temperature, as observed
by Parks and Little (1964). The upper trace is the magnetic
field sweep.



FIG. 71. Electron interferometer fringes and densitometer
curves at the end of a superconducting hollow lead cylinder, as
observed by Lischke (1969). At the bottom of the figure no flux
is trapped and the phase shift is zero. At the upper part of the
figure the trapped flux is 7fic /e and the phase shift is , result-
ing in the inversion of contrast of the fringes.
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FIG. 72. Magnetic flux trapped in a hollow superconducting
cylinder as a function of magnetic field applied during cooling
of the sample, as observed by Boersch and Lischke (1970). Even
multiples of 7fic /e leave the pattern invariant, while odd multi-
ples of 7fic /e produce an inversion of contrast.
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FIG. 73. Electron interference patterns produced by opposite
magnetic fluxes trapped in a superconducting cylinder, as ob-
served by Boersch and Lischke (1970). The pattern is invariant
to flux changes by an even multiple of wfic /e.
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FIG. 79. Phase shift by 7 produced by a thin carbon foil, as ob-
served by Mdllenstedt and Keller (1957). The central horizontal
part of the pattern corresponds to a strip of carbon foil having
different thicknesses on the two sides of the biprism fiber, while
the upper and lower parts of the pattern correspond to strips of
carbon foil having the same thickness on both sides of the fiber.
The resulting fringe shift demonstrates the quantum effects of
electric fluxes.



